Hepatotoxicity of pentavalent antimonial drug: possible role of residual Sb(III) and protective effect of ascorbic acid

Kelly C. Kato¹, Eliane Morais-Teixeira², Priscila G. Reis¹, Neila M. Silva-Barcellos³, Pascal Salaün⁴, Paula P. Campos⁵, José Dias Corrêa-Junior⁶, Ana Rabello², Cynthia Demicheli⁷, Frédéric Frézard¹,#

¹Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av. Antônio Carlos 6627, Pampulha, 31270-901 Belo Horizonte, MG, Brazil
²Laboratório de Pesquisas Clínicas, Centro de Pesquisas René Rachou (CPqRR), Fundação Oswaldo Cruz (Fiocruz), Av. Augusto de Lima 1715, Barro Preto, 30190-002 Belo Horizonte, MG, Brazil
³CiPharma-Programa de Pós-Graduação em Ciências Farmacêuticas, Escola de Farmácia, Universidade Federal de Ouro Preto, 35400-000, Minas Gerais, Brazil
⁴School of Environmental Sciences, University of Liverpool, Brownlow Street, Liverpool L69 3GP, UK
⁵Departamento de Patologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av. Antônio Carlos 6627, Pampulha, 31270-901 Belo Horizonte, MG, Brazil
⁶Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av. Antônio Carlos 6627, Pampulha, 31270-901 Belo Horizonte, MG, Brazil
⁷Departamento de Química, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, Av. Antônio Carlos 6627, Pampulha, 31270-901 Belo Horizonte, MG, Brazil

Running title: Hepatotoxicity of pentavalent antimonial drug

#Address correspondence to Frédéric Frézard, frezard@icb.ufmg.br.
Abstract

Pentavalent antimonial drugs such as meglumine antimoniate (Glucantime®, Glu) produce severe side effects, including cardiotoxicity and hepatotoxicity, during the treatment of leishmaniasis. This work has evaluated the role of residual Sb(III) in the hepatotoxicity of meglumine antimoniate, as well as the protective effect of the antioxidant ascorbic acid (AA) during antimonial chemotherapy in a murine model of visceral leishmaniasis. BALB/c mice infected with Leishmania infantum were treated intraperitoneally at 80 mg Sb/(kg day) with commercial meglumine antimoniate (Glu) or a synthetic meglumine antimoniate with lower Sb(III) level (MA), in association or not with AA (15 mg/(kg day)), for a 20-day period. Control groups received saline or saline plus AA. Livers were evaluated for hepatocytes histological alterations, peroxidase activity and apoptosis. Increased proportions of swollen and apoptotic hepatocytes were observed in animals treated with Glu, when compared to animals treated with saline or MA. The peroxidase activity was also enhanced in the liver of animals that received Glu. Co-treatment with AA reduced the extent of histological changes, the apoptotic index and the peroxidase activity to levels corresponding to the control group. Moreover, the association with AA did not affect the hepatic uptake of Sb and the ability of Glu to reduce the liver and spleen parasite loads in infected mice. In conclusion, our data supports the use of pentavalent antimonials with low residue of Sb(III) and the association of pentavalent antimonials with AA, as effective strategies to reduce side effects in antimonial therapy.

Keywords: ascorbic acid, hepatotoxicity, meglumine antimoniate, leishmaniasis, trivalent antimony, antioxidant, oxidative stress, apoptosis
INTRODUCTION

At the beginning of the last century, Gaspar Vianna, pioneer researcher in the treatment of leishmaniasis, reported the efficacy of antimony(III) potassium tartrate (tartar emetic) for treatment of leishmaniasis (1). The less toxic pentavalent antimony (Sb(V)) complexes including meglumine antimoniate (Gluantime®, Glu) were introduced in the therapy of leishmaniasis from the 1940s. Even though pentavalent antimonials are still the first-line drugs in several countries against all forms of leishmaniasis, their use in the clinical setting has several limitations (2, 3). These compounds have to be given parenterally, daily, for at least three weeks (typically, 20 mg of Sb/(kg day) for 20–30 days). Antimony therapy is often accompanied by local pain during intramuscular injection and by severe side-effects which include cardiotoxicity, pancreatitis, hepatotoxicity and nephrotoxicity (4, 5, 6, 7, 8). As consequences, careful medical supervision is required and compliance problems are frequent.

The mechanisms involved in the toxicity of pentavalent antimonials are not fully elucidated. However, it is generally accepted that Sb(III), either present as residue in pentavalent antimonials (9) or produced in the tissues through reduction (10), may be responsible for their side effects and antileishmanial action (11). Studies of the mechanism of cytotoxicity of the trivalent tartar emetic drug suggest that Sb(III) compromises thiol homeostasis through depletion of intracellular glutathione (GSH) and inhibition of glutathione reductase (12, 13). Then, Sb(III) enhances oxidative stress and leads to apoptosis through increase of reactive oxygen species (ROS) (13, 14, 15). The toxicity of some batches of pentavalent antimonial drug has also been attributed to contamination with As and Pb (16).
Recently, two new synthetic processes were proposed for meglumine antimoniate (17). One of this method used K\textsubscript{Sb}(OH)\textsubscript{6} as a source of antimony, instead of SbCl\textsubscript{5} in the commercial process for Glu. This resulted in a more simple method and a final product that exhibited lower in vitro cytotoxicity, when compared to Glu (18). It has been suggested that this synthetic meglumine antimoniate may be less toxic in vivo than Glu (11).

Ascorbic acid (AA), known as vitamin C, is an important antioxidant and ROS scavenger which is associated to arsenicals in the treatment of cancer (19, 20, 21). Among its several benefits, AA can increase the cytotoxicity of As(III) against multidrug resistant cells, presumably through reduction of GSH intracellular concentration (22, 23). AA was also found to reduce the toxicity of arsenicals in rats through inhibition of oxidative stress (24, 25). Considering the possible role of Sb(III) in the toxicity of pentavalent antimonials and the chemical similarities between Sb(III) and As(III), we hypothesized that AA may reduce the toxicity of pentavalent antimonials during chemotherapy of leishmaniasis.

In this work, the use of a pentavalent antimonial drug with reduced Sb(III) content and the association of these drugs with AA were investigated as novel strategies for improved therapy of leishmaniasis. More specifically, commercial and synthetic forms of meglumine antimoniate differing in their amount of Sb(III) were compared for their hepatotoxicity and efficacy in a murine model of visceral leishmaniasis (VL). AA also was evaluated for its hepatoprotective effect during pentavalent antimonial chemotherapy and its interference with the drug antileishmanial efficacy.
MATERIALS AND METHODS

Materials. A commercial sample of meglumine antimoniate (Glucantime®, Glu) (5-ml vials at 300 mg/ml, batch 6050, Sanofi-Aventis, São Paulo, Brazil) was obtained from the Brazilian Ministry of Health. Ascorbic acid (5-ml vials at concentration of 100 mg/ml; batch 10080785) was obtained from Hypofarma (Ribeirão das Neves, MG, Brazil). N-methyl-D-glucamine (NMG, 98%), bromopyrogallol red (BPR) and antimony(III) potassium tartrate (tartar emetic) were obtained from Aldrich Chemical Co. (Milwaukee, Wis, USA). Potassium hexahydroxoantimoniate (K_Sb(OH)_6) was obtained from Fluka Chemie GmbH (Switzerland).

Synthetic meglumine antimoniate (MA) was obtained from the reaction of NMG with K_Sb(OH)_6, as previously described (17).

Total antimony concentration in MA and Glu, as determined by atomic absorption spectroscopy, was about 30% (w/w).

Trace metal analysis in pentavalent antimonials. The traces of Pb and As were assayed in the antimonial drugs using PerkinElmer NexION 300 ICP-MS.

The procedures used to determine Sb(III) were described in details previously (9, 18).

The photometric method is based on the specific interaction of Sb(III) with the chromogen BPR. The absorbance of BPR at 560 nm decreases proportionally to the amount of Sb(III) in the analyte solution, as a consequence of the formation of the 1:1 BPR-Sb(III) complex.

Briefly, 0.5 ml of analyte solution was prepared from 0.1 ml of 0.1 M phosphate, 0.01 ml of 5% (w/v) tartrate, 0.05 ml of 350 μM BPR solution in 1:1 water/ethanol (v/v) and 0.34 ml
of water. The pH was then adjusted to 6.8 using sodium hydroxide. The absorbance was registered at 560 nm before (A_o) and after (A_m) adding 5 μl of the sample to be analyzed. For each experiment, a calibration curve was established using tartar emetic as the source of Sb(III) and plotting the difference in absorbance (A_o − A_m) as a function of Sb(III) concentration.

The voltammetric method is based on anodic stripping voltammetry at a gold wire electrode and was described in detail recently (9). The detection technique was square wave in 1 mM HCl using a deposition potential of -0.6 V (vs Ag/AgCl/KCl(3M)). Prior to the detection, the Glu solution was diluted in alkaline conditions (10 mM NaOH) to avoid loss of Sb(III). Overall, Glu was diluted 10⁷ times. Similarly, MA powder was first dissolved in 10 mM NaOH to give a solution of 6.1 μg/ml before being diluted further 500 times in the voltammetric cell. In both cases (MA powder and Glu), determination was made by the method of standard additions.

Animals and parasites. BALB/c mice (female, 4–6 weeks old, 18-22 g) were obtained from Centro de Pesquisas René Rachou. Fundação Oswaldo Cruz – Fiocruz (CPqRR, Belo Horizonte, MG, Brazil). Free access was allowed to standard diet and tap water was supplied ad libitum. *Leishmania infantum* promastigotes of strain MHOM/BR/70/BH46, originally obtained from the CPqRR, were maintained in vitro at 22 ± 1°C in Schneider’s medium supplemented with 10% bovine fetal serum by serial subcultures after every 48–72 h.
Infection of animals and treatment protocol. BALB/c mice were inoculated through the tail vein with $2 \times 10^7/200 \mu l$ of *Leishmania infantum* promastigotes, obtained after 8th day of culture growth. Infected animals were divided into six groups ($n = 7$) and treatment was initiated 7 days after infection with the following preparations given daily by IP route for 20 days: Glu group, Glu at 80 mg of Sb/(kg day); MA group, MA at 80 mg of Sb/(kg day); Glu+AA group, Glu at 80 mg of Sb/(kg day) and ascorbic acid at 15 mg/(kg day) given 15 min before antimonial drug; MA+AA group, MA at 80 mg of Sb/(kg day) and ascorbic acid at 15 mg/(kg day); AA group, ascorbic acid at 15 mg/(kg day); saline group, isotonic saline. The choice of AA dose was based on the 250 mg/kg dose given daily by oral route which promoted hepatoprotection in rats exposed for 30 days to arsenite trioxide (24). Conversion of the oral to intraperitoneal dose was made, considering that an oral dose of 250 mg/kg would produce a peak plasma concentration close to that of an intraperitoneal dose of 8 mg/kg in rats (26), which in turn would be equivalent to 16 mg/kg in mice. Animals were sacrificed on day 30 post-infection by cervical dislocation after ketamine-xylazine anesthesia. Experiments were carried out according to the institutional guidelines for the care and use of laboratory animals and received approval from the Ethics Committee in Animal Experimentation of the CPqRR (protocol number L-0024/8).

Determination of parasite burden. Three days after the interruption of treatment, the number of viable parasites at the site of infection was determined using the quantitative limiting dilution assay (27) with the following modifications. Briefly, organs were weighed, fragmented and a tissue homogenate was obtained in 1 ml of Schneider’s medium supplemented with 10% bovine fetal serum and 1 ml of a 100 U/ml penicillin and 100
mg/ml streptomycin solution, at pH 7.0. Each tissue homogenate was serially diluted (10-fold) in a 96-well flat-bottom microtiter plates (Nunc, Nunclon). Samples, in triplicate, were incubated at 26°C for 10 days. The wells containing motile promastigotes were identified with an inverted microscope (Axiovert 25; Zeiss) and the parasite burden was determined from the highest dilution at which promastigotes had grown after 10 days of incubation, as follows: parasite burden = 10^{highest\ dilution}. Data are presented as the parasite burden per mg of organ.

Determination of antimony in the liver. Antimony was determined in the liver as previously described (28) using graphite furnace atomic absorption spectroscopy (Analyst AA600, Perkin Elmer, MA, USA). The livers were recovered, homogenized and submitted to digestion with nitric acid in a dry block MA 4004 (Marconi, SP, Brazil). The analytical method for determination of Sb in the liver was validated and showed suitable levels of precision (CV < 5%), accuracy (80-to-120% analyte recovery) and linearity (range of 10 to 180 µg Sb/l). The quantification limit of the analytical method was 0.93 µg Sb/g of wet organ.

Microscopic alterations. Specimens of the heart, liver, kidneys, pancreas and spleen were fixed in 10% buffered formalin solution. After 24 h, fragments were put in 70% alcohol, dehydrated in graded ethanol crescent solutions to pure ethanol and embedded in paraffin for routine histological protocol. 6-µm tissue sections were obtained using a microtome and stained by Haematoxylin and Eosin (HE) for general histological study (29). Periodic Acid Schiff (PAS) technique was used for the identification of glycogen in the liver section (30).
The liver parenchyma were evaluated under optical microscopy in order to compare the main structural damage among the different treatments. Ten fields of each mice slide were randomly analyzed using 40x and 10x objectives. The images were segmented and the averages of the light areas were evaluated. The images were obtained by digital camera (Q-Color 3; Olympus) attached to Olympus BX41 microscope and processed using the software Image Pro-Plus.

Peroxidase activity in liver. The peroxidase activity was measured as a marker of oxidative stress, using the 3,3'-diaminobenzidine (DAB) technique (31). Ten fields of each slide were analyzed using 60x and 10x objectives in order to obtain relative labeling average for each treatment (32, 33). The images were obtained using the same equipment and software described above.

Apoptosis in the liver. Apoptotic cells were first detected by the observation of cell morphology changes and counted to estimate the apoptotic event, as previously described (34, 35). The analysis was performed on scanned images with a 40x panchromatic objective, selecting the central regions and avoiding necrosis areas, using the software Sigma Scan Pro 5 imaging program. Apoptosis was further evaluated semi-quantitatively by Terminal dUTP nick end labeling (TUNEL) method (36) in paraffin-embedded sections mounted on glass slides using a commercial kit (FragEL™ DNA Fragmentation Detection Kit, Colorimetric-Calbiochem®), according to the manufacturer's instructions. Cells were considered as positive when showing a strong nuclear staining recognised by the presence of dark brown lumps and at least one of the following morphological criteria: (i)
anoikis (cell shrinkage with loss of adhesion with adjacent cells); (ii) nuclear condensation
(condensed chromatin, sometimes partially permeating the nuclear membrane forming
crescent figures); (iii) fragmentation of the nuclear and cytoplasmic membrane (without
karyorrhexis or rupture); and (iv) formation of apoptotic bodies resulting from cell
fractionation. Positive hepatocytes were then counted blindly and results were expressed as
a percentage of the total hepatocytes, excluding the surrounding massive necrosis lesion.
The apoptotic index ($AI = \text{total number of cells with apoptosis/total number of cells} \times 100$)
was determined in fifteen fields per slide.

Statistical analysis. Comparison of the results obtained between different experimental
groups was performed using Kruskal-Wallis test (followed by Dunn’s multiple comparison
test) or Mann-Whitney test in the case of data with non-normal distribution. Comparison
between normally distributed data was performed by One-way ANOVA (with Bonferoni
post test). Differences with p value <0.05 were considered statistically significant.

RESULTS

Sb(III) content in pentavalent antimonial compounds. Two different forms of
meglumine antimoniate were evaluated: the commercial form (Glucantime®, Glu) and
meglumine antimoniate (MA) synthesized from K$_3$Sb(OH)$_6$ (17). Trace metal analysis did
not show detectable levels of Pb (<2.5 μg/g) or As (<1.5 μg/g) in either Glu or MA. On the
other hand, residual Sb(III) could be detected by two different methods: a recently
developed voltammetric method (9) and a photometric method based on the specific interaction of Sb(III) with BPR chromogen (18). Although Glu and MA have similar total Sb levels (30%, w/w), Glu showed higher content of Sb(III) compared to MA. Interestingly, Sb(III) showed much higher availability in the voltammetric than in the photometric assay. According to the voltammetric method, Glu and MA showed respectively 24.1±0.4% and 16.3±0.7% of Sb(III), in relation to total Sb. In agreement with our previous report (18), the photometric method showed Sb(III) proportion of 0.068 ± 0.002% in Glu and did not detect significant level of Sb(III) in MA (proportion < 0.007%).

Antileishmanial activity and hepatotoxicity of pentavalent antimonial compounds in a murine model of visceral leishmaniasis. BALB/c experimentally infected with *Leishmania infantum* were submitted to chemotherapy with Glu or MA at the same dose of total antimony of 80 mg/(kg day) for 20 days by IP route. Three days after the end of treatment, animals were sacrificed and parasite burdens were evaluated in the liver and the spleen. As shown in Fig. 1, significant reductions of liver and spleen parasite loads were observed in the groups treated with both antimonial drugs, in comparison to control group treated with saline.

No significant difference in parasite load was encountered between Glu and MA groups. In accordance with this result, similar concentrations of Sb were found in the liver of mice after treatment with Glu and MA (4.2±1.0 vs 4.9±1.0 μg/g of wet liver).

The heart, kidneys, pancreas, spleen and liver were evaluated for histopathological changes following treatment and comparison was also made between infected and non-infected control groups. The heart, kidneys, pancreas and spleen did not show significant
histological changes upon treatment with Glu or MA (data not shown). On the other hand, histopathological changes were observed in the liver. As illustrated in Fig. 2D, the hepatocytes of the Glu group showed vacuolization and granulosity, in contrast to those of control and MA groups. Fig. 3A shows the result of quantification of lucent areas, indicating a significant increase following treatment with Glu. Since PAS evaluation was negative (data not shown), this change could be attributed to alteration in water homeostasis, which may be caused by free radicals. Further evidence of hepatotoxicity in Glu group was obtained from the increase of TUNEL-positive hepatocytes (Fig. 2A) and of apoptotic index (Fig. 3B).

It is noteworthy that the group treated with MA, in contrast to Glu group, did not show significant histological change and increase of apoptotic activity (Fig. 2B, 2E and 3B), when compared to control. This data suggests that Sb(III) present at a higher level in Glu is responsible for the hepatotoxicity.

In accordance with this model, treatment with Glu, but not MA, significantly increased the peroxidase activity in the hepatic tissue, as evidenced by the greater level of conversion of 3,3'-diaminobenzidine (DAB) substrate (Fig. 3C). This data suggests an increased oxidative stress in the liver, upon treatment with Glu.

Hepatoprotective effect of ascorbic acid in mice treated with Glucantime®. AA was evaluated in association with Glu for its ability to reduce hepatotoxicity in the murine model of VL. An experimental group received Glu at 80 mg Sb/kg plus AA at 15 mg/kg daily for 20 days and comparison was made with experimental groups treated with either Glu, AA or saline. As shown in Fig. 4, co-treatment with AA (Glu+AA group) reduced the
lucent area of hepatocytes (Fig. 4A) and apoptotic index (Fig. 4B) to a similar extent as in saline-treated animals.

The reduction of oxidative stress following co-treatment with AA was supported by the decrease of peroxidase activity, when compared to Glu alone (Fig. 4C).

In order to verify that the reduced histological alterations in Glu+AA group were not due to a lower uptake of Sb in the liver, the amount of Sb in the liver was compared between Glu and Glu+AA groups. A similar value of about 4 μg Sb/g of wet tissue was found in both groups.

Interference of ascorbic acid with the antileishmanial efficacy of Glucantime®. As antimonial drugs seems to exert their activity against *Leishmania* parasite through the induction of oxidative stress (12, 37, 38), it was also important to evaluate the level of interference of the antioxidant AA on the efficacy of Glu.

As shown in Fig 5, the extent of parasite suppression in the liver did not differ significantly between Glu+AA and Glu groups. On the other hand, the association of AA with Glu improved the efficacy of the antimonial drug, with regards to parasite suppression in the spleen. Thus, co-treatment with AA slightly increased the effectiveness of Glu in this VL model.

In the case of MA, co-treatment with AA had no significant effect on the parasite suppressions in both the liver and the spleen (data not shown).
DISCUSSION

The present work reports for the first time a murine model of glucantime-induced hepatotoxicity, based on histopathological changes and the increase of apoptotic index of hepatocytes. The observed changes are consistent with previous reports of histological alterations in the liver of non-human primate (39), elevation of serum level of hepatic enzymes (2, 3, 4) and hepatic failure (5) during pentavalent antimonial chemotherapy. The fact that among the different organs evaluated only the liver showed significant histopathological changes may be explained by the pharmacokinetics of meglumine antimoniate leading to elevated concentration of Sb in the liver (40).

Considering that toxic As and Pb metals were not detected by ICP-MS in the antimonial drugs and that MA with lower Sb(III) residue generated virtually no hepatotoxicity, one can reasonably assume that the hepatotoxicity of Glu is due to residual Sb(III) and its higher bioavailability from this antimonial compound. The apparently lower bioavailability of Sb(III) from MA is consistent with our previous study (18) showing a much lower cytotoxicity of this compound against a tumor cell line, when compared to Glu.

The proposal that residual Sb(III) in Glu promoted hepatotoxicity is consistent with the high dose of Sb(III) administered, which corresponds to about 20 mg of Sb(III) per kg of body weight, based on 24% proportion of antimony under the trivalent form. Indeed, previous study of the subchronic toxicity of antimony(III) potassium tartrate in mice by the IP route revealed hepatocellular necrosis following 12 daily doses of 18 mg Sb(III)/kg (41).

The discrepancy between Sb(III) concentrations determined by the different analytical methods is probably due to a combination of several experimental/chemical factors that promote a relatively strong complexation of Sb(III) to the meglumine antimoniate matrix in
the photometric assay, compared to the voltammetric assay: higher pH value (pH 6.8 vs 3.2 for voltammetry), much lower dilution factor for the BPR method (102 vs 107) and higher ionic strength (20 vs 1 mM). These parameters (pH, dilution factor and ionic strength) were all shown to play a significant influence in the level of Sb(III) determined in Glu (9). In this previous study, the amount of Sb(III) detected was shown to decrease markedly at higher pH, presumably because of pH-induced change in the chemical equilibrium of antimony complex(es) in solution. In addition, although the sample was diluted up to 108 times at neutral pH (~6), Sb(III) was still present as a complex, highlighting the strong complexation constant between Sb(III) and meglumine/meglumine antimoniate ligand (9).

In the present work, the BPR assay is based on the competition between BPR and the meglumine/ meglumine antimoniate ligand for Sb(III) binding. Thus, the much lower concentrations of Sb(III) found by this method may be attributed to a relatively high pH value (6.8) and low dilution factor, which favored strong complexation of Sb(III) with the meglumine/meglumine antimoniate ligand and consequently decreased the amount of Sb(III)-BPR complex.

The fact that the amount of Sb(III) detected by the photometric method is at least 10-fold higher in Glu than MA, whereas it is only 1.5-fold higher by voltammetry, indicates that the pH and dilution conditions of the photometric assay promoted the release of Sb(III) more effectively from Glu than MA. This suggests that Sb(III) is more readily available from Glu than MA at neutral pH. A possible explanation is that the high affinity ligand for Sb(III) may be saturated in Glu but not in MA.

The induction of peroxidase activity in the liver of mice submitted to treatment with Glu is also in agreement with the role of Sb(III) in the mechanism of toxicity of this pentavalent
antimonial drug (11, 18). Indeed, the interference of Sb(III) with the thiol homeostasis (13) results in the increase of ROS production, oxidative stress, induction of peroxidase activity and apoptosis (42, 43).

It is generally accepted that pentavalent antimonials are prodrugs that suffer reduction in vivo from Sb(V) to Sb(III) (10, 11). However, the recent observation that Glu contains high amount of residual Sb(III) (9) led us to propose an alternative model, in which meglumine antimoniate may act as molecular carrier of Sb(III) and release it specifically in the acidic intracellular compartment where *Leishmania* parasite resides. Both models assume that Sb(III) is the final active form against the parasite, resulting in depletion of intracellular reduced thiols and enhanced susceptibility of the parasite to oxidative stress (12).

Considering that Sb(III) mediates both the antileishmanial action and the toxicity of pentavalent antimonials, one may wonder why MA is active, but apparently not toxic. A possible explanation is the selectivity of Sb(III) release that may occur in the acidic parasitophorous vacuole of macrophages, but to a lesser extent in the hepatocytes. This interpretation is also consistent with the finding that pentavalent antimonials are active against axenic amastigotes grown at pH 5.5, but relatively inactive against *Leishmania* promastigotes grown at pH 7 (12).

The demonstration that co-treatment with AA protects the liver against pentavalent antimonial drug toxicity is an important contribution of the present work. This effect may be attributed to the ability of AA to act as secondary defense against oxidative stress. Although a similar effect of AA was previously reported in the case of As(III)-based drug (22, 23), this is the first demonstration of a beneficial effect of AA for a metalloid drug in the pentavalent state. This data strongly suggests that co-treatment with AA may be able to
reduce side effects in antimonial chemotherapy. Even though the demonstration of the protective effect of AA is limited to the liver, we expect that in future studies this effect will be extended to other critical organs such as heart, pancreas and kidney.

Surprisingly, AA was found to improve the antileishmanial efficacy of Glu. As a possible explanation, AA may reduce the intracellular thiol concentration of Leishmania parasite, as previously reported in multidrug resistant tumor cells (20, 21), turning the antimonial drug more active (44). One should also consider that AA may exert either an antioxidant or a prooxidant activity, depending on the concentration and experimental conditions (45). It is noteworthy that the dose of AA used in our study is about 10-fold lower than the effective dose of AA in the treatment of multiple myeloma in combination with arsenic trioxide, which exploits AA prooxidant activity (19, 20). Thus, the present study suggests the coexistence two opposite actions of AA that may take place in distinct cellular compartments: an antioxidant action reducing the drug side effects and a prooxidant action enhancing the drug efficacy.

In conclusion, our data supports the use of pentavalent antimonials with low residue of Sb(III) and the association of pentavalent antimonials with AA, as effective strategies to minimize the side effects mediated by oxidative stress during antimonial therapy.

ACKNOWLEDGEMENTS

We acknowledge the Brazilian agencies CNPq (303046/2009 and studentship), FAPEMIG (PPM-00382-11; REDE 40/11; CBB-APQ-01123-09) and CAPES (2447/2009 and studentship) for financial support. F.F. and C.D. are recipients of a research fellowship from CNPq.
REFERENCES

Feasibility and correlates of arsenic trioxide combined with ascorbic acid-mediated
depletion of intracellular glutathione for the treatment of relapsed/refractory multiple

23. Qazilbash MH, Saliba RM, Nieto Y, Parikh G, Pelosini M, Khan FB, Jones RB,
Champlin RE, Giralt S. 2008. Arsenic trioxide with ascorbic acid and high-dose
14:1401-1407.

24. Singh S, Rana SVS. 2007. Amelioration of arsenic toxicity by L-Ascorbic acid in

induced by inorganic arsenic in liver and kidney of rat. Indian J. Exp. Biol. 45:371-
375.

26. Chen Q, Espey MG, Sun AY, Lee J-H, Krishna MC, Shacter E, Choyke PL,
concentrations selectively generates ascorbate radical and hydrogen peroxide in

quantifying *Leishmania major* in tissues of infected mice. Parasite Immunol. 7:545-
555.

28. Schettini DA, Ribeiro RR, Demicheli C, Rocha OGF, Melo MN, Michalick
MSM, Frézard F. 2006. Improved targeting of antimony to the bone marrow of dogs

Figure legends

Fig. 1. Parasite loads in the liver (A) and spleen (B) in BALB/c mice infected with *Leishmania infantum* after 20 days of treatment with commercial (Glu) or synthetic (MA) meglumine antimoniate (80 mg Sb/(kg day)) or saline by IP route. Data are shown as dot plots, and lines correspond to the median of each group (n = 6-7). *P*<0.05, Kruskal-Wallis followed by Dunn’s multiple comparison post-test.

Fig. 2. Histopathological (D-F) and apoptosis (A-C) analysis in the liver of *L. infantum* infected BALB/c mice submitted to different treatment regimens: A and D, glucantime IP at 80 mg Sb/(kg day); B and E, MA IP at 80 mg Sb/(kg day); C and F, saline IP. Histology was evaluated by HE. Apoptosis was assessed by TUNEL; cells were considered positive, when showing a strong nuclear staining recognised by the presence of dark brown lumps and morphological change characteristic of apoptosis (see method section for details). Bar = 20µm.

Fig. 3. Effect of treatment of *L. infantum*-infected BALB/c mice with commercial (Glu) or synthetic (MA) meglumine antimoniate on different liver parameters: A, lucent area in hepatocytes; B, apoptotic index of hepatocytes; C, peroxidase activity. Mice were submitted to treatment with Glu or MA (80 mg Sb/(kg day)) or saline for 20 days by IP route. Non-infected mice receiving saline were also used as control. Data are shown as means ± SEMs (n= 3-7). ***P*<0.001, One-Way ANOVA with Bonferoni post-test.
Fig. 4. Influence of AA on the liver parameters of *L. infantum*-infected BALB/c mice submitted or not to with commercial meglumine antimoniate (Glu). Liver parameter include: A, area of lucent area in hepatocytes; B, apoptotic index of hepatocytes; C, peroxidase activity. Mice were submitted to treatment with Glu (80 mg Sb/(kg day)), AA (15 mg/(kg day)), Glu+AA association or saline for 20 days by IP route. Data are shown as means ± SEMs (n=3-7). ***P<0.001, **P<0.01, One-Way ANOVA with Bonferroni post-test.

Fig. 5. Parasite loads in the liver (A) and spleen (B) in BALB/c mice infected with *Leishmania infantum* after 20 days of treatment with Glu (80 mg Sb/(kg day)) in the presence or absence of AA (15 mg/(kg day)) by IP route. Data are shown as dot plots, and lines correspond to the median of each group (n=6-7). **P<0.01, Mann-Whitney test.