Reduced Antimony Accumulation in ARM58-Overexpressing Leishmania infantum

Running title: ARM58 antimony resistance marker

Carola Schäfer1,2, Paloma Tejera Nevado1, Dorothea Zander1, and Joachim Clos1#

1 Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany

2 Current affiliation: Carola Schäfer, Dept. of Virology and Cell Biology, Heinrich Pette Institute for Experimental Virology, Hamburg

To whom correspondence should be sent at:

Joachim Clos, Bernhard Nocht Institute for Tropical Medicine, Bernhard Nocht St 74, D-20359 Hamburg; phone +49 40 42818481, email clos@bnitm.de
Abstract

Antimony-based drugs are still the mainstay of chemotherapy against *Leishmania* infections in many endemic countries. Efficacy of antimonials has been compromised by increasing numbers of resistant infections, the basis of which is not fully understood and likely involves multiple factors. By using a functional cloning strategy he have recently identified a novel antimony resistance marker, ARM58, from the parasite *Leishmania braziliensis* that protects the parasites against antimony-based antileishmanial compounds. Here we show that the *L. infantum* homologue also confers resistance against antimony but not against other anti-leishmanial drugs, and that its function depends critically on one of four conserved domains of unknown function. This critical domain requires at least two hydrophobic amino acids and is predicted to form a transmembrane structure. Overexpression of ARM58 in antimony-exposed parasites reduces the intracellular Sb accumulation by over 70% indicating a role for ARM58 in Sb extrusion pathways, but without involvement of energy-dependent transporter proteins.
Introduction

Infections with protozoan parasites are among the most important neglected tropical diseases. This is in particular true for infections with protists from the Order Kinetoplastida which belongs to the Euglenozoa, an early branch of the Eukaryota that is characterised by molecular features such as trans-splicing, RNA editing, and a largely unregulated, polycistronic RNA synthesis (1). The human pathogenic kinetoplastid protozoa all belong to the Family Trypanosomatidae, with the Genera *Trypanosoma* spp and *Leishmania* spp. The former cause human and cattle sleeping sickness in Africa as well as Chagas Disease in South America. The species of the latter are responsible for the various forms of leishmaniasis, with over 2 million new cases per year in 88 countries (2).

The most severe form of leishmaniasis, visceral leishmaniasis (VL = Kala Azar) is lethal if left untreated or if the treatment fails. Since no safe and effective vaccine is known, and since transmission remains high, monitoring and chemotherapy are the sole control measures available.

The most common treatment of leishmaniasis and also the most affordable option are drugs based on pentavalent antimony (Sb(V)). Although they have been in use for over 60 years, their exact mode of action is not clear. What has become clear is that Sb(V) is a pro-drug and requires reduction to Sb(III) (3-5). This reduction may take place inside the host cell, usually antigen presenting cells such as macrophages and monocytes where the parasites reside inside the phagosomes. The intracellular parasites, known as amastigotes, can also reduce Sb(V) to Sb(III). By contrast, the flagellated, arthropod-borne form, the promastigote, is impervious to Sb(V) since it cannot reduce the pro-drug to Sb(III). Sb(III) is toxic to promastigotes and amastigotes, but also to mammalian cells and tissues, thus precluding its direct use as a drug.

Over the last three decades, a large percentage (>60%) of *Leishmania* infections in Northen India and adjacent regions have become resistant to Sb(V)-based drugs (6-9). Alternative drugs approved for treatment are either too expensive for the health services or come with severe side effects and risk factors (6, 10-13). Antimony treatment itself is associated with cardiotoxicity, in particular when repeated treatment courses and high doses are required due to primary treatment failure.

Therefore, efforts have been made to unravel the molecular basis of antimony drug resistance by comparing drug-sensitive and -resistant field isolates and laboratory strains. Features such as increased levels of trypanothion (14), and P-glycoproteins that can act as extrusion pumps (15, 16) were linked to Sb(III) resistance. Conversely, reduced levels of Aquaglyceroporin that is involved in Sb uptake correlate with resistance (17). Another resistance mechanism operates on the host cell...
level. *Leishmania donovani* isolates with no intrinsic Sb resistance were shown to induce host cell extrusion pathways (18, 19).

The feature of drug resistance also lends itself very well to unbiased screening strategies such as functional cloning whereby a genomic DNA library in a shuttle cosmid vector is transfected into drug-sensitive parasites that are then challenged with the drug. Only those parasites carrying cosmids with dominant drug resistance markers will survive the challenge and grow under selection. Recovering and analysing the cosmids within the surviving parasites will then point at resistance marker genes (20). This approach has already been used to identify novel markers of resistance against antimonials and other anti-leishmanial compounds (21, 22).

By its nature, the functional cloning approach is bound to identify genetic markers with suspected functionality (21, 23, 24) but also genes coding for hypothetical proteins without suspected function and defined functional domains (22, 25). In the latter case, the function of the gene product and its link to drug resistance must be established to understand role of the marker.

Using a functional complementation screen approach, we have recently identified a dominant Sb(III) resistance marker from the South American species *Leishmania braziliensis* (26). The gene encodes a 58 kD protein, ARM58 (antimony resistance marker 58 kD), that is unique to the genus *Leishmania*, confers Sb(III) resistance to promastigotes and Sb(V) resistance to intracellular amastigotes, and consists of four, non-identical but related domains, DUF1935 (domain of unknown function). No orthologous gene was found outside the leishmaniae, but a related gene, ARM58rel, has orthologues in *Trypanosoma* spp. In order to understand its functionality we constructed a series of truncated and otherwise mutated variants of the *L. infantum* ARM58 and tested their function. We demonstrate that a small putative transmembrane domain is crucial for the function and that ARM58 overexpression is sufficient to lower intracellular antimony levels in Sb(III)-exposed cells.

Materials and Methods

Materials and Methods

Parasite Strains and Isolates

Leishmania infantum strain MHOM/FR/91/LEM 2259 zymodeme MON-1 Klon 3511 was described before (22, 27). *L. donovani* strain BPK091 was a gift from S. Decuypere and J.-C. Dujardin (28, 29).
Parasite cultivation

Promastigotes were cultivated at 25°C in supplemented Medium 199 (30). G418 (Geneticin sulfate, Carl Roth) was added to 50 µg ml⁻¹ for recombinant cell populations.

Electroporation

Electrotransfection of *Leishmania* promastigotes was carried out as described (31). Promastigotes were harvested during late log phase of growth, washed twice in ice-cold PBS, once in pre-chilled electroporation buffer and suspended at a density of 1 x 10⁸ ml⁻¹ in electroporation buffer (32, 33). 20 µg of circular DNA in an electroporation cuvette was mixed on ice with 0.4 ml of the cell suspension. The mixture was immediately subjected to electroporation using a Bio-Rad Gene Pulser apparatus. Electrotransfection of DNA was carried out by three pulses at 3.750 V/cm and 25 µF in a 4 mm electroporation cuvette. Mock transfection of *Leishmania* was performed in identical fashion, however without plasmid DNA, to obtain negative control strains for antibiotic selection. Following electroporation, cells were kept on ice for 10 min before they were transferred to 10 ml drug-free medium. G418 (50 µg ml⁻¹) was added after 24 hours for selection of recombinant cells.

Dose-inhibition experiments

Dose-inhibition curves for antimonyl tartrate (Sigma-Aldrich #383376), miltefosine (Sigma-Aldrich #M5571) or pentamidine isethionate salt (Sigma-Aldrich #P0547) were established by seeding the promastigotes at 5 x 10⁵ ml⁻¹ in medium 199 containing various concentrations of the drugs. Cell density was measured after 72 h using a Schaerfe System CASY® cell counter. The growth was normalised against growth of the untreated cells. Verapamil or sodium vanadate (both Sigma-Aldrich) were prepared as stock solutions in water at 10 mM and 20 mM, respectively, and added to the cultures as indicated.

In vitro infections

In vitro infections were performed as described (25). Bone marrow-derived macrophages (BMMs) were isolated from the femurs of C57BL/6 mice and incubated in Iscove's Modified Dulbecco's Medium (IMDM) supplemented with 10% heat inactivated FCS, 5% horse serum, and 30% L929 cell supernatant containing macrophage colony-stimulating factor (MCSF), modified after (34). After differentiation, BMMs were harvested, washed, and seeded into 8-well chamber slides (Nunc) at a density of 4 x 10⁵ cells/well. Macrophages were incubated for 48 h at 37°C and 9% CO₂ to permit adhesion. BMMs were then infected using stationary phase promastigotes (35) at 10 parasites per macrophage. After 4 hours of incubation at 37°C in modified Medium 199 (30), free parasites were washed off with PBS. Incubation was continued for another 72 hours in IMDM
without or with 160 µg/ml of Pentostam® (gift from Fachbereich Tropenmedizin, Bundeswehrkrankenhaus Hamburg) at 37°C and 9% CO₂. After the medium was removed, the cells were washed twice in PBS and subsequently fixed in ice-cold methanol. Intracellular parasites were quantified by nuclear staining with DAPI (1.25 µg ml⁻¹, Sigma) and fluorescence microscopy.

Fluorescence microscopy

L. infantum [pCL2N-mCh::ARM58] promastigotes were fixed and co-stained with DAPI as described previously (25), with the exception that fluorescence was detected in the Cy5 channel.

Intracellular Sb concentration

Recombinant cells were incubated for 48 h at 0 µM or at 400 µM Sb(III). Of each culture 5x10⁷ promastigotes were precipitated, washed and lysed in 100 µl nitric acid. After 24 h, 2.9 ml dd H₂O was added. The Sb concentration was measured using Inductively Coupled Plasma Mass Spectrometry (ICP-MS) at Eurofins WEJ Contaminants GmbH, Hamburg, according to standard protocols (36).

Plasmids

Both LinARM58 (LinJ34.0220) and LinARM58rel (LinJ34.0210) were amplified using primers that created NdeI and BamHI sites at the 5’- and 3’-ends respectively. The PCR products were then ligated into NdeI- and BamHI-cut pUC19 plasmid (37). From these templates, deletions and point mutations of ARM58 and ARM58rel coding sequences were created by primer directed mutagenesis according to the protocol described in (38). A listing of the primers used for each mutation can be found in the Supplementary Data File.

For the domain swapping between ARM58 and ARM58rel, we first deleted the third DUF1935 coding region from either gene, using primer-directed deletion PCR followed by recircularisation and leaving SnaBI and NarI sites in place. Then, we amplified the coding sequences for the third DUF1935 from either ARM58 or ARM58rel with in-frame SnaBI and NarI sites at the 5’ and 3’ ends, respectively. We could then insert either the homologous or the paralogous DUF1935 coding sequences in ARM58 ΔD3 and ARM58rel ΔD3, resulting in ARM58rel, ARM58rel_D3, ARM58, and ARM58_D3rel. These constructs were then inserted into the pCLN expression plasmid.

The pCLN vector was described (38). ARM58, ARM58rel, and all mutant variants thereof were excised from the pUC19 vector with NdeI and BamHI sites and ligated into NdeI- and BglII-cut pCLN.
For expression of a mCHERRY-ARM58 fusion protein, new restriction sites were inserted into the multiple cloning site of pCLN to create pCL2N. Then the mCHERRY coding sequence was amplified from the pOB90mCHERRY vector (gift from V. Heussler) and ligated between the KpnI and NdeI restriction sites of pCL2N. ARM58 coding sequences were amplified with primers introducing NdeI and BamHI sites at the 5′- and 3′- ends respectively. The PCR products were then digested with NdeI and BamHI and ligated into the NdeI- and BglII-digested pCL2N-mCH to create the episomal expression vector pCL2N-mCH::ARM58.

Results

LinARM58 and LinARM58rel - structural features

The putative *L. infantum* homologue to the *L. braziliensis* ARM58 (Lbr20.0210) (26) is located on chromosome 34 (LinJ34.0220), but in a syntenic array of genes, including the ARM58rel gene (LinJ34.0210). The putative products of both genes share the tetrapartite arrangement of 4 DUF1935 domains (DUF=domain of unknown function). As in *L. braziliensis*, ARM58 is distinguished from ARM58rel by a ~30 bp insertion between domains DUF1935-3 and DUF1935-4 and by the presence of a putative TMD (Figure 1A).

To ascertain that the LinARM58 is a true homologue to LbrARM58, we overexpressed LinARM58 and LinARM58rel both in *L. infantum* and in *L. donovani* to assess the effects on the Sb(III) resistance. We performed dose-inhibition experiments against controls bearing the empty expression vector pCLN. Overexpression of LinARM58 in *L. infantum* increases the IC₅₀ for Sb(III) from 115 µM to 330 µM, with LinARM58rel showing no such effect (Figure 1B). The effect was slightly more pronounced when *L. donovani* was used as the acceptor – the IC₅₀ increased from 180 µM to 680 µM (Figure 1C). This confirms LinARM58 as structural and functional homologue of LbrARM58.

We also tested the effects of ARM58 overexpression on the survival of intracellular amastigotes under Pentostam® treatment. Bone marrow-derived macrophages were infected with stationary phase promastigotes of *L. infantum* (Figure 1D) or *L. donovani* (Figure 1E) carrying the empty vector or the ARM58 transgene and then subjected to Pentostam® for 72 hours. In both species, the ARM58 transgenes increase the median parasite numbers after the drug treatment by > 2-fold, proving that the Sb(III) resistance of promastigotes translates into Sb(V) resistance of amastigotes.

We also tested the effects of ARM58 overexpression in *L. infantum* against two other anti-leishmanials, Miltefosine and Pentamidine. ARM58 induces resistance neither against Miltefosine nor against Pentamidine.
Domain deletion analysis

The tetrapartite structure of ARM58 raised the question whether the functionality of the DUF-1935 domains is specific or redundant. We therefore constructed a series of ARM58 transgenes lacking one or more putative domains (Figure 2 A) and tested their ability to confer elevated Sb(III) resistance to *L. infantum* promastigotes. Dose-inhibition experiments were performed in quadruplicate to determine the IC$_{50}$ for strains overexpressing the ARM58 variants. The first set of data (Figure 2 B) show that DUF1935-3 is essential for ARM58 function, whilst DUF1935-1 and DUF1935-2 are required for full activity. Only DUF1935-4 and the insertion sequence between DUF1935-3 and DUF1935-4 that is unique to ARM58 are dispensable for mediating Sb(III) resistance.

Next we determined the minimal domain combination required for ARM58 function. Based upon the ARM58_ΔD4 mutant that has full activity, we deleted either DUF1935-1 (ARM58_ΔD14), DUF1935-2 (ARM58_ΔD24), or both (ARM58_ΔD124) and tested the ability of the truncated transgenes to confer Sb(III) resistance to *L. infantum* promastigotes (Figure 2 C). Any combination of DUF1935-3 with either DUF1935-1 or DUF1935-2 retains a minimal effect, but DUF1935-3 alone, although essential, is not sufficient by itself to mitigate Sb(III) toxicity.

Mutagenetic analysis of domain DUF1935-3

In the previous experiment an essential role for the DUF1935-3 in Sb(III) resistance was established. The domain contains a putative 21 amino acid trans-membrane domain (TMD) with the sequence N'-GFVAAEVLPLATVPFLVAP–C'. Computer simulation using the TMpred algorithm (39) identified the residues Val336 and Val368 (underlined) as critical for TMD formation. We therefore produced three transgenes based on ARM58: i) ARM58_ΔTMD which lacks the 21 amino acid TMD entirely, ii) ARM58_V336/338–N replacing the aliphatic valine side chains with polar asparagins, and iii) ARM58_V336/338–L replacing the aliphatic valines with equally aliphatic leucines (Figure 3 A).

L. infantum expressing ARM58 and the three mutants were then challenged with Sb(III) and the IC$_{50}$s for each recombinant parasite line were established in quadruplicate. The results implicate the putative TMD in Sb(III) resistance. Both the deletion of the TMD and the replacement of the two critical valines with asparagins causes a ~50% loss of function. By contrast, the replacement of the...
two valines against leucine residues which are compatible with a TMD did not cause any loss of
function (Figure 3 C). While this is no proof for a TMD, the results show the importance of
aliphatic and hydrophobic side chains in DUF1935-3.

Domain Swapping Experiments

We next made use of the structural similarity between ARM58 and ARM58rel to establish the
impact of DUF1935-3. We created two domain swapping mutants that either place the DUF1935-3
of ARM58 in the context of the ARM58rel sequence (ARM58rel_D3) or replace the DUF1935-3 in
ARM58 with its ARM58rel counterpart DUF1935-3rel (ARM58_D3rel) (Figure 3 C). By
expressing both mosaic genes and the two wild type genes in *L. infantum* we determined their
effects on Sb(III) resistance. As shown in Figure 3 D, replacing DUF1935-3 with DUF1935-3rel
completely abolishes ARM58 functionality. By contrast, the DUF1935-3 in the ARM58rel context
exhibits almost full resistance functionality. This underscores the importance of DUF1935-3 and
may explain how ARM58 developed from the ancestral ARM58rel gene by gaining a hydrophobic
sequence stretch inside DUF1935-3. Moreover, it shows that DUF1935-1rel and DUF1935-2rel are
not specific and can complement DUF1935-3. Conversely, DUF1935-1 and DUF1935-2 cannot
produce the resistance phenotype without the original DUF1935-3.

Subcellular Localisation of mCH::LinARM58 fusion protein

We next tried to determine the subcellular localisation of ARM58 in *L. infantum* as indicator of
possible functions. Unfortunately, we were unable to raise antibodies against recombinantly
expressed ARM58 protein. While the recombinant antigens were recognised with specificity, the
antibodies worked neither in Western blots nor in indirect immunefluorescence microscopy (C.
Schäfer, unpublished data). We therefore resorted to the expression of chromophor fusion proteins,
placing emphasis on the functionality of such fusion proteins. Fusion of green fluorescent protein
(GFP) to the C’ terminus of ARM58 resulted in a loss of Sb(III) resistance-mediating function (data
not shown). We next tried an ARM58 with an N’-terminal mCHERRY (RFP) fusion domain. The
construct is shown in Figure 4 A. Expression of the mCH::ARM58 fusion protein indeed raises the
IC₅₀ for Sb(III) in the same way the ARM58 overexpression does (Figure 4 B), indicating that the
fusion protein is the functional equivalent to the overexpressed ARM58 and lending credibility to
any localisation observed.

The subcellular localisation of this functional fusion protein was then determined using
fluorescence microscopy (Figure 4 C-F) or confocal laser fluorescence microscopy (Figure 4 G-K).
Both technologies deliver very similar results. The mCH::ARM58 fusion proteins localise mostly to
the anterior half of the parasite, with intense fluorescence around the flagellar pocket, the interface for exo- and endocytotic pathways. In addition, fluorescence can be seen around but excluding the nucleus and in few focal spots dispersed over the cell body. Expression of the mCHERRY domain alone yielded the usual even, cytoplasmic distribution (data not shown).

The main localisation near the flagellar pocket hints at an involvement in cross-membrane traffic, and together with the putative trans-membrane domain suggests an involvement with Sb transport.

Intracellular Sb concentration

Next, we determined the effect of ARM58 overexpression on the intracellular Sb concentration before and after exposure to high (400 µM) concentrations of Sb(III) in vitro. A *L. infantum* vector control strain and the *L. infantum* [pCLN-ARM58] strain were cultivated in vitro, for 48 h, either at 0 µM or at 400 µM antimonyl tartrate. We determined both the growth inhibitory effects of Sb(III) exposure and the extractable antimony from 5×10^7 cells.

Measurements show a 95% reduction of cell density for the vector control strain under Sb(III) and only a 25% reduction for the ARM58 overexpressing parasites (Figure 5 A). After extraction, we measured a concentration of 30 µg/L from the vector control cells, but only 8 µg/L from ARM58-overexpressing parasites (Figure 5 B). Factoring in the average cell volume of *L. infantum* promastigotes in culture (2.4×10^{-14} L), the cell number (5×10^7), and the total extraction volume (3 mL), we calculate intracellular concentrations at 625 µM (vector control) and 165 µM (ARM58 overexpression). We conclude that intracellular Sb(III) is at least as high as the extracellular concentration while overexpression of ARM58 lowers intracellular Sb(III) by 74% thus facilitating proliferation under an otherwise inhibiting Sb(III) concentration.

ARM58 shows no signature sequences for p-glycoproteins or for ATPases. Nevertheless, it is conceivable that ARM58 may depend in its function on p-glycoproteins or other energy-dependent transporters. Therefore, we tested the effectiveness of ARM58 overexpression both under the p-glycoprotein inhibitor verapamil and under sodium vanadate, an ATPase inhibitor. At 10 µM verapamil (+V), both control strain (vector) and ARM58 overexpression parasites show a slightly lowered growth at the various Sb(III) concentrations. However, the advantage of ARM58 overexpression under Sb(III) treatment remains unchanged (Fig. 5C). We find no indication for a functional dependence of ARM58 on p-glycoproteins.

Under 50 µM sodium vanadate (+SV), *L. infantum* growth is more sensitive to Sb(III). This is true both for the vector control and for the ARM58 overexpressing parasites (Fig. 5D). However,
ARM58 overexpression still protects *L. infantum* growth against Sb(III) inhibition in the presence of sodium vanadate. Therefore, ATPase inhibition does not abrogate the effect of ARM58, meaning that we have no indication that ATP hydrolysis is critical for ARM58-mediated antimony resistance.

Discussion

In spite of decades of active research, the molecular basis of antimony drug action and antimony drug resistance in *Leishmania* spp is not fully understood. The latter is likely due to a multitude of mechanisms by which *Leishmania* spp can counteract exposure to and impact of antimonials. Among the chief strategies employed are the induction of antimony extrusion either by host cell proteins (19) or by the parasite (36). It was shown by Brochu and colleagues that intracellular Sb(III) accumulation can be lower in resistant strains, and that the difference to sensitive strains is dependent on ATP hydrolysis – an indicator of an energy-dependent extrusion system.

ARM58 does not display any sequence motifs of known ATP binding sites. The DUF1935 – domains of unknown function 1935 – of which ARM58 and ARM58rel are entirely composed have not been known to be part of energy dependent transporter proteins. The other proteins containing DUF1935 signatures are several calpain-like cysteine peptidases and a receptor-type adenylate cyclase which all contain only single DUF1935 motifs.

Other known mechanisms of Sb resistance appear to involve general stress resistance effectors, such as heat shock proteins and thiol pathways. ARM58 bears no structural resemblance to any known stress response effector proteins. While the amplification and overexpression of heat shock proteins has been reported to correlate with Sb resistance (40)(41), we did not select any stress gene loci in our original functional cloning screen (26). It may well be that Hsp-mediated resistance plays a role in intracellular amastigotes challenged with Sb(V), thus escaping our selection strategy. Conversely, the relative stress resistance of ARM58 overexpressing parasites should also be investigated since it was shown recently (42) that drug resistance in *L. donovani* is linked to general virulence and fitness.

In this context it may be interesting to test the overexpression of ARM58 in the background of a trypanothion synthesis-defective strain of *L. infantum* or *L. donovani*. This should tell whether ARM58 is functionally linked to the anti-oxidant pathways.

Nevertheless our results mostly indicate that ARM58 participates in an extrusion pathway. Its dependence on a putative trans-membrane domain, its main localisation close to the flagellar
pocket, and its effect on intracellular antimony levels all point at such a role. We assume for now that ARM58 may interact with and modulate the activity of actual extrusion proteins. However, the inhibition of P-glycoproteins by verapamil or the inhibition of ATPase activity cannot abrogate the effect of ARM58 overexpression. Therefore, we have no indication if and what partners are stimulated by ARM58.

Alternatively, ARM58 could be involved in the intracellular or intravesicular sequestration of antimony. Sequestration would explain the protective effects even under inhibition of ATPase-dependent pathways. However, such sequestration must be subsequently linked to extrusion pathways since the nitric acid extraction used to determine the intracellular antimony concentration will also pick up a sequestered drug.

We can also conclude that the localisation of ARM58 is not dependent on N'-terminal signal sequences. This is evidenced by the specific localisation of the fusion protein with the N'-terminal mCHERRY domain. The mCH::ARM58 fusion protein also induces Sb(III) resistance with the same efficiency as ARM58 itself, meaning it is fully functional in spite of an N'-terminal mCHERRY domain. This argues against a Golgi-dependent transport of ARM58.

We repeatedly tried to raise ARM58-specific antibodies. While the IgY faithfully recognised the bacterially expressed ARM58, no such detection was observed when performing Western blot or indirect immune fluorescence microscopy, in spite of a substantial overexpression in the recombinant parasites. By contrast, expression as mCH::ARM58 fusion protein yielded good detectability. We have to assume that ARM58 may be modified in vivo, thus escaping detection by antibodies raised against bacterially expressed protein. We plan to perform a more thorough analysis applying de-glycosylation prior to antibody detection. The inability to raise effective anti-ARM58 antibodies is also a hurdle for the identification of interacting protein factors. The availability of the mCH::ARM58 fusion protein, however, should enable us to look into the subcellular localisation using high resolution immune electron microscopy.

The structure of ARM58 and ARM58rel with four semi-conserved DUF1935 modules is so far unique and only found within the kinetoplastid protozoa. The domain swapping experiment shown in Figure 3 C,D indicates a close relationship between both genes, a notion that is further supported by a phylogenetic analysis. ARM58 is present in all Leishmania species, both of Old World and New World origin. Synthentic copies of ARM58rel are found both in Leishmania spp and in African trypanosomes. This indicates a specific function of ARM58 in Leishmania parasites.
We have repeatedly attempted to generate P46 null-mutants in *L. infantum* by homologous recombination. We could indeed obtain single allele gene replacement mutants with three different selection marker genes that were flanked by 1 kb each of ARM58 5’- and 3’-flanking sequences. The single allele gene replacement mutants already showed morphological irregularities, including incomplete cell division and an enlarged flagellar pocket. All attempts to replace the second alleles did not result in selectable cells (D.Z., unpublished results), leading to the conclusion that ARM58 plays a crucial role in *Leishmania* spp apart from antimony detoxification.

Our results further underscore the notion that gene amplification is one of the mechanisms by which *Leishmania* parasites counter the effect of drugs. The original functional cloning screen used cosmid-based genomic DNA libraries from drug-resistant and drug-sensitive field isolates. The ARM58 gene locus was selected in both cases, showing that at least in laboratory settings, episomal gene amplification is more powerful than possible sequence variations between isolates. The next step will have to be the analysis of ARM58 expression rates in field isolates from resistance hot spots such as North-eastern India to test whether modulated ARM58 expression correlates with either resistance or sensitivity.

Acknowledgements

We acknowledge the technical assistance of Andrea Macdonald and the help of Tobias Spielmann with confocal laser microscopy. We thank Eurofins, Hamburg, for performing the quantitative antimony analysis, Dr. Neena Goyal (Lucknow, India) for helpful discussions, and Laura Jade Lee for a careful reading of the manuscript. During her stay at the BNI, P.T. was supported by the European Lifelong Learning Programme Leonardo da Vinci.

References

16

26. **Nühs A.** unpublished data.

differences in antimony-resistant parasites. Antimicrobial agents and chemotherapy
3073-3079.

38. Hombach A, Ommen G, Chrobak M, Clos J. 2012. The Hsp90-Sti1 interaction is critical
for Leishmania donovani proliferation in both life cycle stages. Cellular microbiology.

cognate protein HSC70 contribute to antimony tolerance in the protozoan parasite

proteomics screen implicates HSP83 and a small kinetoplastid calpain-related protein in
drug resistance in Leishmania donovani clinical field isolates by modulating drug-induced

Antimonial resistance in Leishmania donovani is associated with increased in vivo parasite
Figure 1. Validation of LinARM58. (A) Putative domain structure of LinARM58 and LinARM58rel. The boxes represent 4 putative domains of unknown function DUF1935 for each protein. TMD = transmembrane domain; insertion = 31 amino acid sequence absent from ARM58rel. The numbers below show the positions within the amino acid sequence. (B) Dose-inhibition experiment for growth of L. infantum carrying the indicated transgenes under the indicated antimonyl tartrate (SbIII) concentrations. Growth over 72h was normalised to the 0 µM samples (100%). The dotted lines indicate the respective IC50 concentrations. n=8; ** = p<0.01; *** = p<0.001. (C) As in (B), but with L. donovani 1SR as acceptor strain. (D) In vitro infection of bone marrow-derived macrophages and treatment with Pentostam®. L. infantum transfected with vector or with the ARM58 transgene were used to infect BMMs at 10:1 ratio. After 4 h, extracellular parasites were removed. Pentostam® was added to the cultures at 160 µg/ml and incubation was continued for 72 h. After DAPI staining, infection rates relative to the untreated control infections (not shown) were determined by fluorescence microscopy (n=10 experiments with 100 macrophages each). The horizontal bars depict the median values. ** = p<0.01. (E) As in (D), but L. donovani 1SR served as acceptor strain. n = 6; * = p<0.05. (F) As in (B), but treated with the indicated concentrations of miltefosine. (G) As in (B), but treated with the indicated concentrations of pentamidine.

Figure 2: (A) Schematic depiction of ARM58 deletion constructs used in (B) and (C). The shaded boxes represent the 4 DUF1935 putative domains. The black box signifies the putative transmembrane domain (TMD). The numbers indicate the positions relative to the wild type amino acid sequence; insertion = 31 amino acid sequence absent from ARM58rel. (B) 50% inhibitory Sb(III) concentrations (in µM) for L. infantum carrying the indicated ARM58 variants. n=4; * = p<0.05 relative to full-length ARM58. (C) As in (B), but using further shortened ARM58 variants. n=4.

Figure 3: (A) Schematic depiction of mutated ARM58 constructs used in (B). The shaded boxes represent the 4 DUF1935 putative domains. The black box signifies the putative transmembrane domain (TMD). The numbers indicate the positions relative to the wild type amino acid sequence. (B) 50% inhibitory Sb(III) concentrations (in µM) for L. infantum carrying the indicated ARM58 mutants. n=4; * = p<0.05 relative to full-length ARM58. (C) Schematic depiction of ARM58rel, ARM58, and two DUF1935-III domain swapping mutants, ARM58_3Drel and ARM58rel_D3. (D) As in (B), but testing domain swapping mutants of ARM58 and AMR58rel. n=4.
Figure 4: Subcellular localisation of mCH::ARM58 fusion proteins. (A) Schematic depiction of the episomal expression plasmid pCL2N-mCH::ARM58. (B) Functional test of mCHERRY::ARM58 fusion protein. *L. infantum* overexpressing either ARM58 (solid squares) or mCH::ARM58 (diamonds) were subjected to a 72 h dose-effect growth experiment under various Sb(III) concentrations and compared to a control strain transfected with pCLN (vector, circles). Dotted lines: IC50; error bars: standard deviation; n = 4. (C-F) Fluorescence microscopy imaging of *L. infantum* [pCL2N-mCH::ARM58] showing DIC (C), DAPI (D), and mCHERRY (E) channels plus overlay of DAPI and mCHERRY (F). n=nucleus; k=kinetoplast. (G-K) Confocal laser microscopy imaging of *L. infantum* [pCL2N-mCH::ARM58] showing DIC (G), DAPI (H), and mCHERRY (I) channels plus overlay of DAPI and mCHERRY (K). n=nucleus; k=kinetoplast; size bar = 5 µm.

Figure 5: Intracellular Sb concentration following Sb(III) exposure. *L. infantum* [pCLN] and *L. infantum* [pCLN-ARM58] were incubated for 48 h at 0 µM or at 400 µM of Sb(III). Cells were then counted (A). Of each culture 5X10⁷ promastigotes were precipitated, washed, and lysed in nitric acid. Sb concentration in each lysate was measured by Inductively Coupled Plasma Mass Spectrometry (ICPMS) and shown in (B). n=3. (C,D) Induction of Sb(III) resistance under 10 µM verapamil (C) or 50 µM sodium vanadate (D). Vector controls and ARM58 overexpressing *L. infantum* were grown for 72 h. Cell densities were measured and plotted against the indicated Sb(III) concentrations. Values given are the medians of 4 independent experiments. V = verapamil; SV = sodium vanadate.
A

ARM58

- DUF1935-1
- DUF1935-2
- DUF1935-3
- TMD
- DUF1935-4

ARM58 ΔTMD

- DUF1935-1
- DUF1935-2
- DUF1935-3

ARM58 V336/338 to N

- DUF1935-1
- DUF1935-2
- DUF1935-3
- V336/338N

ARM58 V336/338 to L

- DUF1935-1
- DUF1935-2
- DUF1935-3
- V336/338L

B

IC50 [µM]

<table>
<thead>
<tr>
<th></th>
<th>vector</th>
<th>ARM58</th>
<th>ARM58 ΔTMD</th>
<th>ARM58 V336/338N</th>
<th>ARM58 V336/338L</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
</tbody>
</table>

C

ARM58 rel

- DUF1935-1 rel
- DUF1935-2 rel
- DUF1935-3 rel
- DUF1935-4 rel

ARM58 rel D3

- DUF1935-1 rel
- DUF1935-2 rel
- DUF1935-3 rel
- TMD
- DUF1935-4 rel

ARM58

- DUF1935-1
- DUF1935-2
- DUF1935-3
- TMD
- DUF1935-4

ARM58 D3 rel

- DUF1935-1
- DUF1935-2
- DUF1935-3 rel
- DUF1935-4

D

IC50 [µM]

<table>
<thead>
<tr>
<th></th>
<th>vector</th>
<th>ARM58 rel</th>
<th>ARM58 rel D3</th>
<th>ARM58</th>
<th>ARM58 D3 rel</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
</tbody>
</table>

* Denotes statistically significant difference.

Downloaded from http://aac.asm.org on July 7, 2017 by guest.