Characterization of Environmental CTX-M-15-Producing Stenotrophomonas maltophilia

Ana Maravić,a Mirjana Skočibušić,a,# Željana Fredotović,a Svjetlana Cvjetan,b,c Ivica Šamanić,a Jasna Puizinaa

Department of Biology, Faculty of Science, University of Split, Split, Croatiaa; Department of Molecular Biology, Ruder Bošković Institute, Zagreb, Croatiab; Mediterranean Institute for Life Sciences, Split, Croatiac

#Address correspondence to Mirjana Skočibušić, Mirjana.Skocibusic@pmfst.hr.
Stenotrophomonas maltophilia is a widespread environmental microorganism (1) that has emerged as significant opportunistic pathogen (2) due to intrinsic resistance to almost all available antibiotics. Apart from native β-lactamases L1 and L2 (1), acquired ESBLs were also identified (3, 4), pointing S. maltophilia as potential reservoir. Furthermore, resistance to trimethoprim/sulfamethoxazole (SXT), a therapy of choice for S. maltophilia, is being increasingly reported (5-8).

Forty-one S. maltophilia isolates were recovered from retail shellfish (Mytilus galloprovincialis; 8 isolates) purchased at fish markets in Split, Croatia, and from coastal marine waters near Split (33 isolates) in 2012. Strains were isolated on imipenem (16µg/ml)-containing tryptic soy agar at 30 °C, and identified using API 20NE.

Whole-cell DNA was extracted and used for PCR detection of ESBL genes (9). Nineteen isolates carried blaCTX-M-15, six additionally harboured blaTEM-116 and one carried blaTEM-127 (Table 1). Metallo-β-lactamase genes were not detected (10). TEM-116 is usually associated with environmental Enterobacteriaceae (11) and Pseudomonas spp. (12), and was never before identified in S. maltophilia. More importantly, CTX-M-15 was previously identified only in S. maltophilia clinical strain from France (4). S1-PFGE of plasmid DNA followed by Southern blotting (9), showed that blaCTX-M-15 was located on large plasmids of various sizes (Table 1). Conjugation transfer of blaCTX-M-15 using E. coli J53 (13) at 37ºC and 27 ºC, and using azide (100 µg/ml) and cefotaxime (8 µg/ml)-containing Luria-Bertani agar failed even after repeated attempts. Only a 160 kb plasmid (isolate 248) was successfully transferred into E. coli JM109 using heat-shock transformation. For PCR-based replicon typing (14), plasmid DNA from transformant was used, while for other isolates each plasmid band was cut from the gel, and after confirmed as blaCTX-M-15-positive by PCR, was used as template. Interestingly, all plasmids belonged to IncFIB incompatibility group. IncFII, IncFIA and IncFIB blaCTX-M-15-bearing plasmids were previously reported in Croatia (9, 15). Possible
explanation for the unusual lack of IncF plasmid replication in *E. coli* recipients could be that plasmids adapted to *S. maltophilia*, altering their host range and specificity of replication traits (16). Further studies are needed to better characterize these resistance plasmids.

PFGE of XbaI-digested genomic DNA (17, 18) showed heterogeneity among CTX-M-15-producing isolates (data not shown). Isolates were further investigated for class 1, 2 and 3 integrases, gene cassettes, and *sul1* and *sul2* genes, by PCR (7, 8). Class 1 integron gene cassettes were amplified using primers 5’CS and 3’CS (7), then sequenced and analyzed using BLAST. SXT MICs, assessed by Etest (19) ranged from 0.25 to >64 µg/ml. In combination with *dfrA* and *sul2, sul1* may lead to high resistance to SXT in *S. maltophilia* (8). Of 12 SXT-resistant isolates, 9 were class 1 integrase-positive and 7 of them possessed *sul1*; 2 isolates carried *sul1* and *sul2* (Table 1). Previously, *sul1* was identified in clinical isolates from China, Taiwan, Europe, and Americas (5-8). Noteworthy, *dfrA17-aadA5* gene cassette was previously detected only in clinical isolates from China (8).

This report presents first description of IncF::CTX-M-15 in *S. maltophilia* of environmental and clinical origin, and SXT resistance traits previously found only in clinical isolates, emphasizing the possibility for *S. maltophilia* to be hidden reservoirs for these multidrug resistance determinants.

ACKNOWLEDGMENTS

Authors thank Prof. António Correia (University of Aveiro, Portugal) for providing *E. coli* J53. This work was supported by Ministry of Science, Education and Sports, Croatia (grants 177-000000-3182 and 177-1191196-0829).
REFERENCES

Stenotrophomonas maltophilia resistance to trimethoprim/ sulfamethoxazole mediated
by acquisition of sul and dfra genes in a plasmid-mediated class 1 integron. Int. J.

9. Maravić A, Skočibušić M, Šamanić I, Fredotović Ž, Cvjetan S, Jutronić M,
Puizina J. 2013. Aeromonas spp. simultaneously harbouring blaCTX-M-15,
blaSHV-12,
blaPER-1 and blaFOX-2, in wild-growing Mediterranean mussel (Mytilus

Ferreira H, Peixe L. 2009. Leakage into Portuguese aquatic environments of

profiles and first report of TEM extended-spectrum β-lactamase in Pseudomonas
28: 2039–2045.

Identification of plasmids by PCR-based replicon typing. J. Microbiol. Methods
63:219–228.

15. Literacka E, Bedenic B, Baraniak A, Fiett J, Tonkic M, Jajic-Bencic I,
Gniadkowski M. 2009. blaCTX-M genes in Escherichia coli strains from Croatian
hospitals are located in new (blaCTX-M-3a) and widely spread (blaCTX-M-3a and blaCTX-M-126) genetic structures. Antimicrob. Agents Chemother. 53:1630–1635.

<table>
<thead>
<tr>
<th>Isolate no.</th>
<th>Origin</th>
<th>Isolation dates</th>
<th>β-lactamases identified</th>
<th>CTX-M-15-bearing plasmids (kb)</th>
<th>Other plasmids (kb)</th>
<th>MIC of SXT (µg/ml)</th>
<th>Genes</th>
<th>Gene cassettes</th>
</tr>
</thead>
<tbody>
<tr>
<td>122 Mussel</td>
<td>06/01/2012</td>
<td>CTX-M-15</td>
<td>200</td>
<td>50</td>
<td>>64</td>
<td>-</td>
<td>sul2</td>
<td>-</td>
</tr>
<tr>
<td>123 Mussel</td>
<td>05/15/2012</td>
<td>CTX-M-15</td>
<td>200</td>
<td>50</td>
<td>>64</td>
<td>-</td>
<td>sul2</td>
<td>-</td>
</tr>
<tr>
<td>124 Mussel</td>
<td>07/04/2012</td>
<td>CTX-M-15</td>
<td>160</td>
<td>40</td>
<td>0.5</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>125 Mussel</td>
<td>09/05/2012</td>
<td>CTX-M-15</td>
<td>160</td>
<td>100</td>
<td>0.5</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>126 Mussel</td>
<td>09/26/2012</td>
<td>CTX-M-15</td>
<td>200</td>
<td>-</td>
<td>>64</td>
<td>int1</td>
<td>sul1</td>
<td>dfrA17-aadA5</td>
</tr>
<tr>
<td>138 Seawater</td>
<td>07/04/2012</td>
<td>CTX-M-15</td>
<td>160</td>
<td>7</td>
<td>0.25</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>139 Seawater</td>
<td>07/04/2012</td>
<td>CTX-M-15</td>
<td>160</td>
<td>-</td>
<td>>64</td>
<td>int1</td>
<td>sul1</td>
<td>-</td>
</tr>
<tr>
<td>145 Seawater</td>
<td>12/05/2012</td>
<td>CTX-M-15</td>
<td>200</td>
<td>7, 30</td>
<td>>64</td>
<td>int1</td>
<td>sul1</td>
<td>-</td>
</tr>
<tr>
<td>166 Seawater</td>
<td>11/14/2012</td>
<td>CTX-M-15</td>
<td>160</td>
<td>40</td>
<td>0.5</td>
<td>int1</td>
<td>-</td>
<td>aacA4</td>
</tr>
<tr>
<td>167 Seawater</td>
<td>09/05/2012</td>
<td>CTX-M-15</td>
<td>160</td>
<td>50</td>
<td>>64</td>
<td>int1</td>
<td>sul1, sul2</td>
<td>dfrA17-aadA5</td>
</tr>
<tr>
<td>168 Seawater</td>
<td>06/15/2012</td>
<td>CTX-M-15</td>
<td>80</td>
<td>7</td>
<td>>64</td>
<td>int1</td>
<td>sul2</td>
<td>dfrA17-aadA5</td>
</tr>
<tr>
<td>203 Seawater</td>
<td>06/15/2012</td>
<td>CTX-M-15, TEM-116</td>
<td>100</td>
<td>-</td>
<td>>64</td>
<td>int1</td>
<td>-</td>
<td>dfrA17-aadA5</td>
</tr>
<tr>
<td>204 Seawater</td>
<td>06/01/2012</td>
<td>CTX-M-15, TEM-116</td>
<td>160</td>
<td>7, 70</td>
<td>>64</td>
<td>int1</td>
<td>sul1</td>
<td>cmrA4</td>
</tr>
<tr>
<td>208 Seawater</td>
<td>05/16/2012</td>
<td>CTX-M-15, TEM-116</td>
<td>160</td>
<td>7</td>
<td>>64</td>
<td>-</td>
<td>sul2</td>
<td>-</td>
</tr>
<tr>
<td>209 Seawater</td>
<td>06/01/2012</td>
<td>CTX-M-15, TEM-116</td>
<td>160</td>
<td>7</td>
<td>1</td>
<td>int1</td>
<td>-</td>
<td>cmrA4</td>
</tr>
<tr>
<td>210 Seawater</td>
<td>01/20/2012</td>
<td>CTX-M-15, TEM-116</td>
<td>160</td>
<td>7</td>
<td>1</td>
<td>int1</td>
<td>-</td>
<td>cmrA4</td>
</tr>
<tr>
<td>211 Seawater</td>
<td>03/01/2012</td>
<td>TEM-127</td>
<td>0.5</td>
<td>int1</td>
<td>-</td>
<td>aacA4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>218 Seawater</td>
<td>09/05/2012</td>
<td>CTX-M-15, TEM-116</td>
<td>250</td>
<td>30</td>
<td>0.5</td>
<td>int1</td>
<td>-</td>
<td>catB2</td>
</tr>
<tr>
<td>247 Mussel</td>
<td>06/15/2012</td>
<td>CTX-M-15</td>
<td>160</td>
<td>7</td>
<td>>64</td>
<td>int1</td>
<td>sul1</td>
<td>-</td>
</tr>
<tr>
<td>248 Seawater</td>
<td>11/14/2012</td>
<td>CTX-M-15</td>
<td>160</td>
<td>50</td>
<td>>64</td>
<td>int1</td>
<td>sul1, sul2</td>
<td>dfrA17-aadA5</td>
</tr>
</tbody>
</table>
Isolation dates are shown as month/day/year.