Skip to main content
  • ASM
    • Antimicrobial Agents and Chemotherapy
    • Applied and Environmental Microbiology
    • Clinical Microbiology Reviews
    • Clinical and Vaccine Immunology
    • EcoSal Plus
    • Eukaryotic Cell
    • Infection and Immunity
    • Journal of Bacteriology
    • Journal of Clinical Microbiology
    • Journal of Microbiology & Biology Education
    • Journal of Virology
    • mBio
    • Microbiology and Molecular Biology Reviews
    • Microbiology Resource Announcements
    • Microbiology Spectrum
    • Molecular and Cellular Biology
    • mSphere
    • mSystems
  • Log in
  • My alerts
  • My Cart

Main menu

  • Home
  • Articles
    • Current Issue
    • Accepted Manuscripts
    • COVID-19 Special Collection
    • Archive
    • Minireviews
  • For Authors
    • Submit a Manuscript
    • Scope
    • Editorial Policy
    • Submission, Review, & Publication Processes
    • Organization and Format
    • Errata, Author Corrections, Retractions
    • Illustrations and Tables
    • Nomenclature
    • Abbreviations and Conventions
    • Publication Fees
    • Ethics Resources and Policies
  • About the Journal
    • About AAC
    • Editor in Chief
    • Editorial Board
    • For Reviewers
    • For the Media
    • For Librarians
    • For Advertisers
    • Alerts
    • AAC Podcast
    • RSS
    • FAQ
  • Subscribe
    • Members
    • Institutions
  • ASM
    • Antimicrobial Agents and Chemotherapy
    • Applied and Environmental Microbiology
    • Clinical Microbiology Reviews
    • Clinical and Vaccine Immunology
    • EcoSal Plus
    • Eukaryotic Cell
    • Infection and Immunity
    • Journal of Bacteriology
    • Journal of Clinical Microbiology
    • Journal of Microbiology & Biology Education
    • Journal of Virology
    • mBio
    • Microbiology and Molecular Biology Reviews
    • Microbiology Resource Announcements
    • Microbiology Spectrum
    • Molecular and Cellular Biology
    • mSphere
    • mSystems

User menu

  • Log in
  • My alerts
  • My Cart

Search

  • Advanced search
Antimicrobial Agents and Chemotherapy
publisher-logosite-logo

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Accepted Manuscripts
    • COVID-19 Special Collection
    • Archive
    • Minireviews
  • For Authors
    • Submit a Manuscript
    • Scope
    • Editorial Policy
    • Submission, Review, & Publication Processes
    • Organization and Format
    • Errata, Author Corrections, Retractions
    • Illustrations and Tables
    • Nomenclature
    • Abbreviations and Conventions
    • Publication Fees
    • Ethics Resources and Policies
  • About the Journal
    • About AAC
    • Editor in Chief
    • Editorial Board
    • For Reviewers
    • For the Media
    • For Librarians
    • For Advertisers
    • Alerts
    • AAC Podcast
    • RSS
    • FAQ
  • Subscribe
    • Members
    • Institutions
Pharmacology and Therapeutics

New In Vitro Model to Study the Effect of Antibiotic Concentration and Rate of Elimination on Antibacterial Activity

S. Grasso, G. Meinardi, I. De Carneri, V. Tamassia
S. Grasso
1Department of Microbiology Carlo Erba Research Institute, 20159 Milan, Italy
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
G. Meinardi
1Department of Microbiology Carlo Erba Research Institute, 20159 Milan, Italy
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
I. De Carneri
1Department of Microbiology Carlo Erba Research Institute, 20159 Milan, Italy
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
V. Tamassia
2Department of Biometric, Carlo Erba Research Institute, 20159 Milan, Italy
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
DOI: 10.1128/AAC.13.4.570
  • Article
  • Info & Metrics
  • PDF
Loading

ABSTRACT

A new apparatus is described which serves to investigate the in vitro antibacterial activity of antibiotics as a function of different concentration time curves. The apparatus can be adjusted to simulate the biexponential serum level curves observed in vivo after oral or intramuscular administration. Preliminary studies were carried out with a cephalosporin derivative, cefazolin, against Escherichia coli and Klebsiella sp. strains simulating initial concentrations of 5, 10, and 20 μg/ml that decreased exponentially with half-lives of 30, 60, and 120 min. Surviving cells were counted at 1-h intervals for 10 h. In all the situations tested there was an initial phase of rapid bactericidal activity followed by a phase of bacteriostatic activity, whose length depended on the drug elimination rate but was relatively independent of the initial concentrations. Bacterial regrowth occurred when the antibiotic concentration fell below the minimum inhibitory concentration of the drug against the strains tested. The antibacterial activity of cefazolin, cephacetrile, and cephradine against E. coli and Klebsiella strains was also investigated, in a medium containing 4% human albumin, simulating the serum level curves observed in humans after an intramuscular dose of 1 g. The results obtained suggest that, for cephalosporins, a longer half-life might be more useful than higher peak levels.

  • Copyright © 1978 American Society for Microbiology
PreviousNext
Back to top
Download PDF
Citation Tools
New In Vitro Model to Study the Effect of Antibiotic Concentration and Rate of Elimination on Antibacterial Activity
S. Grasso, G. Meinardi, I. De Carneri, V. Tamassia
Antimicrobial Agents and Chemotherapy Apr 1978, 13 (4) 570-576; DOI: 10.1128/AAC.13.4.570

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Print

Alerts
Sign In to Email Alerts with your Email Address
Email

Thank you for sharing this Antimicrobial Agents and Chemotherapy article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
New In Vitro Model to Study the Effect of Antibiotic Concentration and Rate of Elimination on Antibacterial Activity
(Your Name) has forwarded a page to you from Antimicrobial Agents and Chemotherapy
(Your Name) thought you would be interested in this article in Antimicrobial Agents and Chemotherapy.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
New In Vitro Model to Study the Effect of Antibiotic Concentration and Rate of Elimination on Antibacterial Activity
S. Grasso, G. Meinardi, I. De Carneri, V. Tamassia
Antimicrobial Agents and Chemotherapy Apr 1978, 13 (4) 570-576; DOI: 10.1128/AAC.13.4.570
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Top
  • Article
  • Info & Metrics
  • PDF

Related Articles

Cited By...

About

  • About AAC
  • Editor in Chief
  • Editorial Board
  • Policies
  • For Reviewers
  • For the Media
  • For Librarians
  • For Advertisers
  • Alerts
  • AAC Podcast
  • RSS
  • FAQ
  • Permissions
  • Journal Announcements

Authors

  • ASM Author Center
  • Submit a Manuscript
  • Article Types
  • Ethics
  • Contact Us

Follow #AACJournal

@ASMicrobiology

       

ASM Journals

ASM journals are the most prominent publications in the field, delivering up-to-date and authoritative coverage of both basic and clinical microbiology.

About ASM | Contact Us | Press Room

 

ASM is a member of

Scientific Society Publisher Alliance

 

American Society for Microbiology
1752 N St. NW
Washington, DC 20036
Phone: (202) 737-3600

Copyright © 2021 American Society for Microbiology | Privacy Policy | Website feedback

Print ISSN: 0066-4804; Online ISSN: 1098-6596