Skip to main content
  • ASM
    • Antimicrobial Agents and Chemotherapy
    • Applied and Environmental Microbiology
    • Clinical Microbiology Reviews
    • Clinical and Vaccine Immunology
    • EcoSal Plus
    • Eukaryotic Cell
    • Infection and Immunity
    • Journal of Bacteriology
    • Journal of Clinical Microbiology
    • Journal of Microbiology & Biology Education
    • Journal of Virology
    • mBio
    • Microbiology and Molecular Biology Reviews
    • Microbiology Resource Announcements
    • Microbiology Spectrum
    • Molecular and Cellular Biology
    • mSphere
    • mSystems
  • Log in
  • My alerts
  • My Cart

Main menu

  • Home
  • Articles
    • Current Issue
    • Accepted Manuscripts
    • COVID-19 Special Collection
    • Archive
    • Minireviews
  • For Authors
    • Submit a Manuscript
    • Scope
    • Editorial Policy
    • Submission, Review, & Publication Processes
    • Organization and Format
    • Errata, Author Corrections, Retractions
    • Illustrations and Tables
    • Nomenclature
    • Abbreviations and Conventions
    • Publication Fees
    • Ethics Resources and Policies
  • About the Journal
    • About AAC
    • Editor in Chief
    • Editorial Board
    • For Reviewers
    • For the Media
    • For Librarians
    • For Advertisers
    • Alerts
    • AAC Podcast
    • RSS
    • FAQ
  • Subscribe
    • Members
    • Institutions
  • ASM
    • Antimicrobial Agents and Chemotherapy
    • Applied and Environmental Microbiology
    • Clinical Microbiology Reviews
    • Clinical and Vaccine Immunology
    • EcoSal Plus
    • Eukaryotic Cell
    • Infection and Immunity
    • Journal of Bacteriology
    • Journal of Clinical Microbiology
    • Journal of Microbiology & Biology Education
    • Journal of Virology
    • mBio
    • Microbiology and Molecular Biology Reviews
    • Microbiology Resource Announcements
    • Microbiology Spectrum
    • Molecular and Cellular Biology
    • mSphere
    • mSystems

User menu

  • Log in
  • My alerts
  • My Cart

Search

  • Advanced search
Antimicrobial Agents and Chemotherapy
publisher-logosite-logo

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Accepted Manuscripts
    • COVID-19 Special Collection
    • Archive
    • Minireviews
  • For Authors
    • Submit a Manuscript
    • Scope
    • Editorial Policy
    • Submission, Review, & Publication Processes
    • Organization and Format
    • Errata, Author Corrections, Retractions
    • Illustrations and Tables
    • Nomenclature
    • Abbreviations and Conventions
    • Publication Fees
    • Ethics Resources and Policies
  • About the Journal
    • About AAC
    • Editor in Chief
    • Editorial Board
    • For Reviewers
    • For the Media
    • For Librarians
    • For Advertisers
    • Alerts
    • AAC Podcast
    • RSS
    • FAQ
  • Subscribe
    • Members
    • Institutions
Research Article

Development of "oligotyping" for characterization and molecular epidemiology of TEM beta-lactamases in members of the family Enterobacteriaceae.

C Mabilat, P Courvalin
C Mabilat
Unité des Agents Antibactériens, Institut Pasteur, Paris, France.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
P Courvalin
Unité des Agents Antibactériens, Institut Pasteur, Paris, France.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
DOI: 10.1128/AAC.34.11.2210
  • Article
  • Info & Metrics
  • PDF
Loading

ABSTRACT

Based on the DNA sequences of blaTEM-1 and blaTEM-2, which encode parental penicillinases TEM-1 and TEM-2, respectively, and blaTEM-3, blaTEM-4, blaTEM-5, blaTEM-6, and blaTEM-7, which encode extended-spectrum beta-lactamases, we designed heptadecanucleotides to discriminate point mutations in five loci. Determination of the hybridization profiles by colony hybridization with this selection of probes, termed "oligotyping," allowed characterization of the TEM variants present in 265 clinical isolates of the family Enterobacteriaceae that exhibit synergism between a penicillinase inhibitor and broad-spectrum cephaslosporins. Among the 222 strains harboring TEM enzymes, Klebsiella pneumoniae (48%) and Escherichia coli (21%) were predominant, and TEM-3 was the most common enzyme (60%). Penicillinases TEM-1 and TEM-2 were detected alone (15 and 1%, respectively), combined (1%), or associated with another TEM beta-lactamase (17 and 6%, respectively). Fourteen variants, including seven new enzymes, were detected. One, TEM-13, was a new penicillinase with the same isoelectric point and substrate range as TEM-2 but differed by a single amino acid substitution, whereas the others, TEM-14 to TEM-19, were extended-spectrum beta-lactamases that consisted of novel combinations of known amino acid substitutions. Different TEM variants were found to coexist within the same cells. A patient could harbor two or three different strains that encoded the same enzyme or two indistinguishable isolates that produced distinct TEM beta-lactamases.

PreviousNext
Back to top
Download PDF
Citation Tools
Development of "oligotyping" for characterization and molecular epidemiology of TEM beta-lactamases in members of the family Enterobacteriaceae.
C Mabilat, P Courvalin
Antimicrobial Agents and Chemotherapy Nov 1990, 34 (11) 2210-2216; DOI: 10.1128/AAC.34.11.2210

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Print

Alerts
Sign In to Email Alerts with your Email Address
Email

Thank you for sharing this Antimicrobial Agents and Chemotherapy article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Development of "oligotyping" for characterization and molecular epidemiology of TEM beta-lactamases in members of the family Enterobacteriaceae.
(Your Name) has forwarded a page to you from Antimicrobial Agents and Chemotherapy
(Your Name) thought you would be interested in this article in Antimicrobial Agents and Chemotherapy.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
Development of "oligotyping" for characterization and molecular epidemiology of TEM beta-lactamases in members of the family Enterobacteriaceae.
C Mabilat, P Courvalin
Antimicrobial Agents and Chemotherapy Nov 1990, 34 (11) 2210-2216; DOI: 10.1128/AAC.34.11.2210
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Top
  • Article
  • Info & Metrics
  • PDF

Related Articles

Cited By...

About

  • About AAC
  • Editor in Chief
  • Editorial Board
  • Policies
  • For Reviewers
  • For the Media
  • For Librarians
  • For Advertisers
  • Alerts
  • AAC Podcast
  • RSS
  • FAQ
  • Permissions
  • Journal Announcements

Authors

  • ASM Author Center
  • Submit a Manuscript
  • Article Types
  • Ethics
  • Contact Us

Follow #AACJournal

@ASMicrobiology

       

ASM Journals

ASM journals are the most prominent publications in the field, delivering up-to-date and authoritative coverage of both basic and clinical microbiology.

About ASM | Contact Us | Press Room

 

ASM is a member of

Scientific Society Publisher Alliance

 

American Society for Microbiology
1752 N St. NW
Washington, DC 20036
Phone: (202) 737-3600

Copyright © 2021 American Society for Microbiology | Privacy Policy | Website feedback

Print ISSN: 0066-4804; Online ISSN: 1098-6596