Skip to main content
  • ASM
    • Antimicrobial Agents and Chemotherapy
    • Applied and Environmental Microbiology
    • Clinical Microbiology Reviews
    • Clinical and Vaccine Immunology
    • EcoSal Plus
    • Eukaryotic Cell
    • Infection and Immunity
    • Journal of Bacteriology
    • Journal of Clinical Microbiology
    • Journal of Microbiology & Biology Education
    • Journal of Virology
    • mBio
    • Microbiology and Molecular Biology Reviews
    • Microbiology Resource Announcements
    • Microbiology Spectrum
    • Molecular and Cellular Biology
    • mSphere
    • mSystems
  • Log in
  • My alerts
  • My Cart

Main menu

  • Home
  • Articles
    • Current Issue
    • Accepted Manuscripts
    • COVID-19 Special Collection
    • Archive
    • Minireviews
  • For Authors
    • Submit a Manuscript
    • Scope
    • Editorial Policy
    • Submission, Review, & Publication Processes
    • Organization and Format
    • Errata, Author Corrections, Retractions
    • Illustrations and Tables
    • Nomenclature
    • Abbreviations and Conventions
    • Publication Fees
    • Ethics Resources and Policies
  • About the Journal
    • About AAC
    • Editor in Chief
    • Editorial Board
    • For Reviewers
    • For the Media
    • For Librarians
    • For Advertisers
    • Alerts
    • AAC Podcast
    • RSS
    • FAQ
  • Subscribe
    • Members
    • Institutions
  • ASM
    • Antimicrobial Agents and Chemotherapy
    • Applied and Environmental Microbiology
    • Clinical Microbiology Reviews
    • Clinical and Vaccine Immunology
    • EcoSal Plus
    • Eukaryotic Cell
    • Infection and Immunity
    • Journal of Bacteriology
    • Journal of Clinical Microbiology
    • Journal of Microbiology & Biology Education
    • Journal of Virology
    • mBio
    • Microbiology and Molecular Biology Reviews
    • Microbiology Resource Announcements
    • Microbiology Spectrum
    • Molecular and Cellular Biology
    • mSphere
    • mSystems

User menu

  • Log in
  • My alerts
  • My Cart

Search

  • Advanced search
Antimicrobial Agents and Chemotherapy
publisher-logosite-logo

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Accepted Manuscripts
    • COVID-19 Special Collection
    • Archive
    • Minireviews
  • For Authors
    • Submit a Manuscript
    • Scope
    • Editorial Policy
    • Submission, Review, & Publication Processes
    • Organization and Format
    • Errata, Author Corrections, Retractions
    • Illustrations and Tables
    • Nomenclature
    • Abbreviations and Conventions
    • Publication Fees
    • Ethics Resources and Policies
  • About the Journal
    • About AAC
    • Editor in Chief
    • Editorial Board
    • For Reviewers
    • For the Media
    • For Librarians
    • For Advertisers
    • Alerts
    • AAC Podcast
    • RSS
    • FAQ
  • Subscribe
    • Members
    • Institutions
Research Article

Penicillin-binding proteins are regulated by rpoS during transitions in growth states of Escherichia coli.

T J Dougherty, M J Pucci
T J Dougherty
Department of Microbiology, Bristol-Myers Squibb Pharmaceutical Research Institute, Wallingford, Connecticut 06492-7660.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
M J Pucci
Department of Microbiology, Bristol-Myers Squibb Pharmaceutical Research Institute, Wallingford, Connecticut 06492-7660.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
DOI: 10.1128/AAC.38.2.205
  • Article
  • Figures & Data
  • Info & Metrics
  • PDF
Loading

ABSTRACT

Attention has been recently focused on the role of the rpoS (formerly katF) gene product as a regulator during the transition from the exponential growth phase to the stationary phase as well as during nutritional starvation. It has been demonstrated that RpoS is an alternate sigma factor which would bind to promoters of genes induced at these times. It was previously noted that rpoS mutants do not undergo a transition to short rods during entry into the stationary phase. Because of their well-established role in morphogenesis, we investigated the status of the penicillin-binding proteins (PBPs) in Escherichia coli wild-type and isogenic rpoS mutants. Samples from cultures of E. coli ZK126 and ZK1000 (rpoS::kan) were taken in the midlogarithmic, early stationary, and late (24 h) stationary phases. The increase in PBP 6 seen upon entry of the wild-type strain into the stationary phase was not observed with the rpoS::kan cells, even after 24 h. There was also a marked decrease of PBP 3 in wild-type stationary-phase cells; PBP 3 has a known influence on morphogenesis. This decrease in PBP 3 was found to be markedly affected by the disruption of rpoS. Similar observations were made after prolonged starvation of the two strains for either glucose or a required amino acid. Inasmuch as PBPs are involved in peptidoglycan synthesis, we also examined two properties of peptidoglycan, autolysis and cross-linkage, that might be altered by the PBP differences. However, neither of these properties, which are known to undergo changes in the stationary phase, appeared to be influenced by the status of RpoS.

PreviousNext
Back to top
Download PDF
Citation Tools
Penicillin-binding proteins are regulated by rpoS during transitions in growth states of Escherichia coli.
T J Dougherty, M J Pucci
Antimicrobial Agents and Chemotherapy Feb 1994, 38 (2) 205-210; DOI: 10.1128/AAC.38.2.205

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Print

Alerts
Sign In to Email Alerts with your Email Address
Email

Thank you for sharing this Antimicrobial Agents and Chemotherapy article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Penicillin-binding proteins are regulated by rpoS during transitions in growth states of Escherichia coli.
(Your Name) has forwarded a page to you from Antimicrobial Agents and Chemotherapy
(Your Name) thought you would be interested in this article in Antimicrobial Agents and Chemotherapy.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
Penicillin-binding proteins are regulated by rpoS during transitions in growth states of Escherichia coli.
T J Dougherty, M J Pucci
Antimicrobial Agents and Chemotherapy Feb 1994, 38 (2) 205-210; DOI: 10.1128/AAC.38.2.205
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Top
  • Article
  • Figures & Data
  • Info & Metrics
  • PDF

Related Articles

Cited By...

About

  • About AAC
  • Editor in Chief
  • Editorial Board
  • Policies
  • For Reviewers
  • For the Media
  • For Librarians
  • For Advertisers
  • Alerts
  • AAC Podcast
  • RSS
  • FAQ
  • Permissions
  • Journal Announcements

Authors

  • ASM Author Center
  • Submit a Manuscript
  • Article Types
  • Ethics
  • Contact Us

Follow #AACJournal

@ASMicrobiology

       

ASM Journals

ASM journals are the most prominent publications in the field, delivering up-to-date and authoritative coverage of both basic and clinical microbiology.

About ASM | Contact Us | Press Room

 

ASM is a member of

Scientific Society Publisher Alliance

 

American Society for Microbiology
1752 N St. NW
Washington, DC 20036
Phone: (202) 737-3600

Copyright © 2021 American Society for Microbiology | Privacy Policy | Website feedback

Print ISSN: 0066-4804; Online ISSN: 1098-6596