Skip to main content
  • ASM
    • Antimicrobial Agents and Chemotherapy
    • Applied and Environmental Microbiology
    • Clinical Microbiology Reviews
    • Clinical and Vaccine Immunology
    • EcoSal Plus
    • Eukaryotic Cell
    • Infection and Immunity
    • Journal of Bacteriology
    • Journal of Clinical Microbiology
    • Journal of Microbiology & Biology Education
    • Journal of Virology
    • mBio
    • Microbiology and Molecular Biology Reviews
    • Microbiology Resource Announcements
    • Microbiology Spectrum
    • Molecular and Cellular Biology
    • mSphere
    • mSystems
  • Log in
  • My alerts
  • My Cart

Main menu

  • Home
  • Articles
    • Current Issue
    • Accepted Manuscripts
    • COVID-19 Special Collection
    • Archive
    • Minireviews
  • For Authors
    • Submit a Manuscript
    • Scope
    • Editorial Policy
    • Submission, Review, & Publication Processes
    • Organization and Format
    • Errata, Author Corrections, Retractions
    • Illustrations and Tables
    • Nomenclature
    • Abbreviations and Conventions
    • Publication Fees
    • Ethics Resources and Policies
  • About the Journal
    • About AAC
    • Editor in Chief
    • Editorial Board
    • For Reviewers
    • For the Media
    • For Librarians
    • For Advertisers
    • Alerts
    • AAC Podcast
    • RSS
    • FAQ
  • Subscribe
    • Members
    • Institutions
  • ASM
    • Antimicrobial Agents and Chemotherapy
    • Applied and Environmental Microbiology
    • Clinical Microbiology Reviews
    • Clinical and Vaccine Immunology
    • EcoSal Plus
    • Eukaryotic Cell
    • Infection and Immunity
    • Journal of Bacteriology
    • Journal of Clinical Microbiology
    • Journal of Microbiology & Biology Education
    • Journal of Virology
    • mBio
    • Microbiology and Molecular Biology Reviews
    • Microbiology Resource Announcements
    • Microbiology Spectrum
    • Molecular and Cellular Biology
    • mSphere
    • mSystems

User menu

  • Log in
  • My alerts
  • My Cart

Search

  • Advanced search
Antimicrobial Agents and Chemotherapy
publisher-logosite-logo

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Accepted Manuscripts
    • COVID-19 Special Collection
    • Archive
    • Minireviews
  • For Authors
    • Submit a Manuscript
    • Scope
    • Editorial Policy
    • Submission, Review, & Publication Processes
    • Organization and Format
    • Errata, Author Corrections, Retractions
    • Illustrations and Tables
    • Nomenclature
    • Abbreviations and Conventions
    • Publication Fees
    • Ethics Resources and Policies
  • About the Journal
    • About AAC
    • Editor in Chief
    • Editorial Board
    • For Reviewers
    • For the Media
    • For Librarians
    • For Advertisers
    • Alerts
    • AAC Podcast
    • RSS
    • FAQ
  • Subscribe
    • Members
    • Institutions
Journal Article

Outer membrane proteins responsible for multiple drug resistance in Pseudomonas aeruginosa.

N Masuda, E Sakagawa, S Ohya
N Masuda
Biological Research Laboratories, Sankyo Co., Ltd., Tokyo, Japan.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
E Sakagawa
Biological Research Laboratories, Sankyo Co., Ltd., Tokyo, Japan.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
S Ohya
Biological Research Laboratories, Sankyo Co., Ltd., Tokyo, Japan.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
DOI: 10.1128/AAC.39.3.645
  • Article
  • Info & Metrics
  • PDF
Loading

ABSTRACT

Three types of multiple-drug-resistant mutants which were phenotypically similar to previously described nalB, nfxB, and nfxC mutants were isolated from Pseudomonas aeruginosa PAO1 and two clinical isolates. Type 1 (nalB-type) mutants showed cross-resistance to meropenem, cephems, and quinolones. They overproduced an outer membrane protein with an apparent molecular mass of 50 kDa (OprM). Type 2 (nfxB-type) mutants showed cross-resistance to quinolones and new cephems, i.e., cefpirome and cefozopran, concomitant with overproduction of an outer membrane protein with an apparent molecular mass of 54 kDa (OprJ). Type 3 (nfxC-type) mutants showed cross-resistance to carbapenems and quinolones. They produced decreased amounts of OprD and increased amounts of a 50-kDa protein (OprN), which was almost the same molecular weight as that of OprM, but it was distinguishable from OprM by its heat modifiability on sodium dodecyl sulfate-polyacrylamide gel electrophoresis. In the presence of salicylate, the parent strains showed an increased level of resistance to carbapenems and quinolones and produced decreased amounts of OprD and increased amounts of OprN. Salicylate caused the repression of OprJ production and the loss of resistance to cefpirome and cefozopran in two of the three OprJ-overproducing mutants, although salicylate slightly increased the level of resistance in the parent strains. The changes in susceptibilities were transient in the presence of salicylate. These data suggest that at least three different outer membrane proteins, OprM, OprJ, and OprN, are associated with multiple drug resistance in P. aeruginosa.

PreviousNext
Back to top
Download PDF
Citation Tools
Outer membrane proteins responsible for multiple drug resistance in Pseudomonas aeruginosa.
N Masuda, E Sakagawa, S Ohya
Antimicrobial Agents and Chemotherapy Mar 1995, 39 (3) 645-649; DOI: 10.1128/AAC.39.3.645

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Print

Alerts
Sign In to Email Alerts with your Email Address
Email

Thank you for sharing this Antimicrobial Agents and Chemotherapy article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Outer membrane proteins responsible for multiple drug resistance in Pseudomonas aeruginosa.
(Your Name) has forwarded a page to you from Antimicrobial Agents and Chemotherapy
(Your Name) thought you would be interested in this article in Antimicrobial Agents and Chemotherapy.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
Outer membrane proteins responsible for multiple drug resistance in Pseudomonas aeruginosa.
N Masuda, E Sakagawa, S Ohya
Antimicrobial Agents and Chemotherapy Mar 1995, 39 (3) 645-649; DOI: 10.1128/AAC.39.3.645
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Top
  • Article
  • Info & Metrics
  • PDF

Related Articles

Cited By...

About

  • About AAC
  • Editor in Chief
  • Editorial Board
  • Policies
  • For Reviewers
  • For the Media
  • For Librarians
  • For Advertisers
  • Alerts
  • AAC Podcast
  • RSS
  • FAQ
  • Permissions
  • Journal Announcements

Authors

  • ASM Author Center
  • Submit a Manuscript
  • Article Types
  • Ethics
  • Contact Us

Follow #AACJournal

@ASMicrobiology

       

ASM Journals

ASM journals are the most prominent publications in the field, delivering up-to-date and authoritative coverage of both basic and clinical microbiology.

About ASM | Contact Us | Press Room

 

ASM is a member of

Scientific Society Publisher Alliance

 

American Society for Microbiology
1752 N St. NW
Washington, DC 20036
Phone: (202) 737-3600

Copyright © 2021 American Society for Microbiology | Privacy Policy | Website feedback

Print ISSN: 0066-4804; Online ISSN: 1098-6596