Skip to main content
  • ASM
    • Antimicrobial Agents and Chemotherapy
    • Applied and Environmental Microbiology
    • Clinical Microbiology Reviews
    • Clinical and Vaccine Immunology
    • EcoSal Plus
    • Eukaryotic Cell
    • Infection and Immunity
    • Journal of Bacteriology
    • Journal of Clinical Microbiology
    • Journal of Microbiology & Biology Education
    • Journal of Virology
    • mBio
    • Microbiology and Molecular Biology Reviews
    • Microbiology Resource Announcements
    • Microbiology Spectrum
    • Molecular and Cellular Biology
    • mSphere
    • mSystems
  • Log in
  • My alerts
  • My Cart

Main menu

  • Home
  • Articles
    • Current Issue
    • Accepted Manuscripts
    • COVID-19 Special Collection
    • Archive
    • Minireviews
  • For Authors
    • Submit a Manuscript
    • Scope
    • Editorial Policy
    • Submission, Review, & Publication Processes
    • Organization and Format
    • Errata, Author Corrections, Retractions
    • Illustrations and Tables
    • Nomenclature
    • Abbreviations and Conventions
    • Publication Fees
    • Ethics Resources and Policies
  • About the Journal
    • About AAC
    • Editor in Chief
    • Editorial Board
    • For Reviewers
    • For the Media
    • For Librarians
    • For Advertisers
    • Alerts
    • AAC Podcast
    • RSS
    • FAQ
  • Subscribe
    • Members
    • Institutions
  • ASM
    • Antimicrobial Agents and Chemotherapy
    • Applied and Environmental Microbiology
    • Clinical Microbiology Reviews
    • Clinical and Vaccine Immunology
    • EcoSal Plus
    • Eukaryotic Cell
    • Infection and Immunity
    • Journal of Bacteriology
    • Journal of Clinical Microbiology
    • Journal of Microbiology & Biology Education
    • Journal of Virology
    • mBio
    • Microbiology and Molecular Biology Reviews
    • Microbiology Resource Announcements
    • Microbiology Spectrum
    • Molecular and Cellular Biology
    • mSphere
    • mSystems

User menu

  • Log in
  • My alerts
  • My Cart

Search

  • Advanced search
Antimicrobial Agents and Chemotherapy
publisher-logosite-logo

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Accepted Manuscripts
    • COVID-19 Special Collection
    • Archive
    • Minireviews
  • For Authors
    • Submit a Manuscript
    • Scope
    • Editorial Policy
    • Submission, Review, & Publication Processes
    • Organization and Format
    • Errata, Author Corrections, Retractions
    • Illustrations and Tables
    • Nomenclature
    • Abbreviations and Conventions
    • Publication Fees
    • Ethics Resources and Policies
  • About the Journal
    • About AAC
    • Editor in Chief
    • Editorial Board
    • For Reviewers
    • For the Media
    • For Librarians
    • For Advertisers
    • Alerts
    • AAC Podcast
    • RSS
    • FAQ
  • Subscribe
    • Members
    • Institutions
Journal Article

Detection of gyrA and gyrB mutations in quinolone-resistant clinical isolates of Escherichia coli by single-strand conformational polymorphism analysis and determination of levels of resistance conferred by two different single gyrA mutations.

S Ouabdesselam, D C Hooper, J Tankovic, C J Soussy
S Ouabdesselam
Centre Hospitalier Universitaire Henri Mondor, Créteil, France.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
D C Hooper
Centre Hospitalier Universitaire Henri Mondor, Créteil, France.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
J Tankovic
Centre Hospitalier Universitaire Henri Mondor, Créteil, France.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
C J Soussy
Centre Hospitalier Universitaire Henri Mondor, Créteil, France.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
DOI: 10.1128/AAC.39.8.1667
  • Article
  • Info & Metrics
  • PDF
Loading

ABSTRACT

Twelve quinolone-resistant clinical isolates of Escherichia coli (nalidixic acid MICs, 64 to 512 micrograms/ml; norfloxacin MICs, 0.25 to 8 micrograms/ml) were transformed with plasmid pJSW101 carrying the gyrA+ gene and with plasmid pJB11 carrying the gyrB+ gene to examine the proportion of gyrA and gyrB mutations. Transformation with pJSW101 resulted in complementation (nalidixic acid MICs, 4 to 32 micrograms/ml; norfloxacin MICs, 0.06 to 0.25 micrograms/ml). In contrast, no change in MICs were observed after transformation with pJB11. A 418-bp fragment of gyrA from the 12 strains was amplified by PCR. Direct DNA sequencing of that fragment identified the causes of quinolone resistance in eight strains as a single point mutation leading to a substitution of the serine at position 83 (Ser-83) to Leu and in four strains as a single point mutation leading to a substitution of Asp-87 to Gly. Exchange of the fragment from one of these strains with that of gyrA+ and transformation of resistance with the hybrid gyrA plasmid indicated the contribution of Gly-87 to resistance and the stabilities of mutants containing GyrA (Gly-87). Thus, gyrA gene mutations are probably encountered more often than gyrB gene mutations in clinical isolates of E. coli. In addition, the substitution of Asp-87 to Gly can be encountered in such strains. On the basis of the level of resistance found in the fragment exchange experiment, the quinolone resistance attributable to Gly-87 appears to be comparable to that attributable to Leu-83. The levels of resistance found in the clinical isolates shown to have a Gly-87 mutation (nalidixic acid MICs, 64 to 512 micrograms/ml; norfloxacin MICs, 0.5 to 4 micrograms/ml) suggest that the Gly-87 mutation causes resistance at the level of the nalidixic acid MIC (64 micrograms/ml) or the norfloxacin MIC (0.5 micrograms/ml or less) and that the additional increments in resistance seen in the other strains with higher levels of resistance may be attributable to additional mutations. The single-strand conformational polymorphism analysis with PCR products readily detected te Leu-83 and Gly-87 mutations.

PreviousNext
Back to top
Download PDF
Citation Tools
Detection of gyrA and gyrB mutations in quinolone-resistant clinical isolates of Escherichia coli by single-strand conformational polymorphism analysis and determination of levels of resistance conferred by two different single gyrA mutations.
S Ouabdesselam, D C Hooper, J Tankovic, C J Soussy
Antimicrobial Agents and Chemotherapy Aug 1995, 39 (8) 1667-1670; DOI: 10.1128/AAC.39.8.1667

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Print

Alerts
Sign In to Email Alerts with your Email Address
Email

Thank you for sharing this Antimicrobial Agents and Chemotherapy article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Detection of gyrA and gyrB mutations in quinolone-resistant clinical isolates of Escherichia coli by single-strand conformational polymorphism analysis and determination of levels of resistance conferred by two different single gyrA mutations.
(Your Name) has forwarded a page to you from Antimicrobial Agents and Chemotherapy
(Your Name) thought you would be interested in this article in Antimicrobial Agents and Chemotherapy.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
Detection of gyrA and gyrB mutations in quinolone-resistant clinical isolates of Escherichia coli by single-strand conformational polymorphism analysis and determination of levels of resistance conferred by two different single gyrA mutations.
S Ouabdesselam, D C Hooper, J Tankovic, C J Soussy
Antimicrobial Agents and Chemotherapy Aug 1995, 39 (8) 1667-1670; DOI: 10.1128/AAC.39.8.1667
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Top
  • Article
  • Info & Metrics
  • PDF

Related Articles

Cited By...

About

  • About AAC
  • Editor in Chief
  • Editorial Board
  • Policies
  • For Reviewers
  • For the Media
  • For Librarians
  • For Advertisers
  • Alerts
  • AAC Podcast
  • RSS
  • FAQ
  • Permissions
  • Journal Announcements

Authors

  • ASM Author Center
  • Submit a Manuscript
  • Article Types
  • Ethics
  • Contact Us

Follow #AACJournal

@ASMicrobiology

       

ASM Journals

ASM journals are the most prominent publications in the field, delivering up-to-date and authoritative coverage of both basic and clinical microbiology.

About ASM | Contact Us | Press Room

 

ASM is a member of

Scientific Society Publisher Alliance

 

American Society for Microbiology
1752 N St. NW
Washington, DC 20036
Phone: (202) 737-3600

Copyright © 2021 American Society for Microbiology | Privacy Policy | Website feedback

Print ISSN: 0066-4804; Online ISSN: 1098-6596