Skip to main content
  • ASM
    • Antimicrobial Agents and Chemotherapy
    • Applied and Environmental Microbiology
    • Clinical Microbiology Reviews
    • Clinical and Vaccine Immunology
    • EcoSal Plus
    • Eukaryotic Cell
    • Infection and Immunity
    • Journal of Bacteriology
    • Journal of Clinical Microbiology
    • Journal of Microbiology & Biology Education
    • Journal of Virology
    • mBio
    • Microbiology and Molecular Biology Reviews
    • Microbiology Resource Announcements
    • Microbiology Spectrum
    • Molecular and Cellular Biology
    • mSphere
    • mSystems
  • Log in
  • My alerts
  • My Cart

Main menu

  • Home
  • Articles
    • Current Issue
    • Accepted Manuscripts
    • COVID-19 Special Collection
    • Archive
    • Minireviews
  • For Authors
    • Submit a Manuscript
    • Scope
    • Editorial Policy
    • Submission, Review, & Publication Processes
    • Organization and Format
    • Errata, Author Corrections, Retractions
    • Illustrations and Tables
    • Nomenclature
    • Abbreviations and Conventions
    • Publication Fees
    • Ethics Resources and Policies
  • About the Journal
    • About AAC
    • Editor in Chief
    • Editorial Board
    • For Reviewers
    • For the Media
    • For Librarians
    • For Advertisers
    • Alerts
    • AAC Podcast
    • RSS
    • FAQ
  • Subscribe
    • Members
    • Institutions
  • ASM
    • Antimicrobial Agents and Chemotherapy
    • Applied and Environmental Microbiology
    • Clinical Microbiology Reviews
    • Clinical and Vaccine Immunology
    • EcoSal Plus
    • Eukaryotic Cell
    • Infection and Immunity
    • Journal of Bacteriology
    • Journal of Clinical Microbiology
    • Journal of Microbiology & Biology Education
    • Journal of Virology
    • mBio
    • Microbiology and Molecular Biology Reviews
    • Microbiology Resource Announcements
    • Microbiology Spectrum
    • Molecular and Cellular Biology
    • mSphere
    • mSystems

User menu

  • Log in
  • My alerts
  • My Cart

Search

  • Advanced search
Antimicrobial Agents and Chemotherapy
publisher-logosite-logo

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Accepted Manuscripts
    • COVID-19 Special Collection
    • Archive
    • Minireviews
  • For Authors
    • Submit a Manuscript
    • Scope
    • Editorial Policy
    • Submission, Review, & Publication Processes
    • Organization and Format
    • Errata, Author Corrections, Retractions
    • Illustrations and Tables
    • Nomenclature
    • Abbreviations and Conventions
    • Publication Fees
    • Ethics Resources and Policies
  • About the Journal
    • About AAC
    • Editor in Chief
    • Editorial Board
    • For Reviewers
    • For the Media
    • For Librarians
    • For Advertisers
    • Alerts
    • AAC Podcast
    • RSS
    • FAQ
  • Subscribe
    • Members
    • Institutions
Journal Article | Research Support, Non-U.S. Gov't | Research Support, U.S. Gov't, P.H.S.

Role of mexA-mexB-oprM in antibiotic efflux in Pseudomonas aeruginosa.

X Z Li, H Nikaido, K Poole
X Z Li
Department of Molecular and Cell Biology, University of California, Berkeley 94720, USA.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
H Nikaido
Department of Molecular and Cell Biology, University of California, Berkeley 94720, USA.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
K Poole
Department of Molecular and Cell Biology, University of California, Berkeley 94720, USA.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
DOI: 10.1128/AAC.39.9.1948
  • Article
  • Info & Metrics
  • PDF
Loading

ABSTRACT

We have earlier described mexA-mexB-oprK, an operon involved in pyoverdine export in Pseudomonas aeruginosa, and suggested that the products of these genes also contribute to the active efflux of several antibiotics (K. Poole, K. Krebes, C. McNally, and S. Neshat, J. Bacteriol. 175:7363-7372, 1993). Recently the outer membrane component of this efflux system was shown to be OprM, rather than OprK (N. Gotoh and K. Poole, unpublished results). In the present study, the conclusion concerning the efflux activity of this system was confirmed and extended by the measurement of drug accumulation in intact cells. Thus, the steady-state accumulation levels of tetracycline and norfloxacin were increased in mexA and oprM null mutants. mexA and oprM null mutants also showed an increase in susceptibility to a wide variety of beta-lactam antibiotics and an increase in the steady-state accumulation level of benzylpenicillin, indicating that the MexA-MexB-OprM pump also effluxes beta-lactams. Furthermore, deenergization of the cytoplasmic membrane with a proton conductor always produced a strong increase in the accumulation level. Finally, a single-step mutant over-producing MexAB-OprM accumulated less tetracycline and chloramphenicol than the parent strain and was more resistant to a wide range of antimicrobial compounds, including beta-lactams. These results support the notion that these proteins contribute to the intrinsic resistance of P. aeruginosa through the multidrug active efflux process.

PreviousNext
Back to top
Download PDF
Citation Tools
Role of mexA-mexB-oprM in antibiotic efflux in Pseudomonas aeruginosa.
X Z Li, H Nikaido, K Poole
Antimicrobial Agents and Chemotherapy Sep 1995, 39 (9) 1948-1953; DOI: 10.1128/AAC.39.9.1948

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Print

Alerts
Sign In to Email Alerts with your Email Address
Email

Thank you for sharing this Antimicrobial Agents and Chemotherapy article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Role of mexA-mexB-oprM in antibiotic efflux in Pseudomonas aeruginosa.
(Your Name) has forwarded a page to you from Antimicrobial Agents and Chemotherapy
(Your Name) thought you would be interested in this article in Antimicrobial Agents and Chemotherapy.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
Role of mexA-mexB-oprM in antibiotic efflux in Pseudomonas aeruginosa.
X Z Li, H Nikaido, K Poole
Antimicrobial Agents and Chemotherapy Sep 1995, 39 (9) 1948-1953; DOI: 10.1128/AAC.39.9.1948
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Top
  • Article
  • Info & Metrics
  • PDF

Related Articles

Cited By...

About

  • About AAC
  • Editor in Chief
  • Editorial Board
  • Policies
  • For Reviewers
  • For the Media
  • For Librarians
  • For Advertisers
  • Alerts
  • AAC Podcast
  • RSS
  • FAQ
  • Permissions
  • Journal Announcements

Authors

  • ASM Author Center
  • Submit a Manuscript
  • Article Types
  • Ethics
  • Contact Us

Follow #AACJournal

@ASMicrobiology

       

ASM Journals

ASM journals are the most prominent publications in the field, delivering up-to-date and authoritative coverage of both basic and clinical microbiology.

About ASM | Contact Us | Press Room

 

ASM is a member of

Scientific Society Publisher Alliance

 

American Society for Microbiology
1752 N St. NW
Washington, DC 20036
Phone: (202) 737-3600

Copyright © 2021 American Society for Microbiology | Privacy Policy | Website feedback

Print ISSN: 0066-4804; Online ISSN: 1098-6596