Skip to main content
  • ASM
    • Antimicrobial Agents and Chemotherapy
    • Applied and Environmental Microbiology
    • Clinical Microbiology Reviews
    • Clinical and Vaccine Immunology
    • EcoSal Plus
    • Eukaryotic Cell
    • Infection and Immunity
    • Journal of Bacteriology
    • Journal of Clinical Microbiology
    • Journal of Microbiology & Biology Education
    • Journal of Virology
    • mBio
    • Microbiology and Molecular Biology Reviews
    • Microbiology Resource Announcements
    • Microbiology Spectrum
    • Molecular and Cellular Biology
    • mSphere
    • mSystems
  • Log in
  • My alerts
  • My Cart

Main menu

  • Home
  • Articles
    • Current Issue
    • Accepted Manuscripts
    • COVID-19 Special Collection
    • Archive
    • Minireviews
  • For Authors
    • Submit a Manuscript
    • Scope
    • Editorial Policy
    • Submission, Review, & Publication Processes
    • Organization and Format
    • Errata, Author Corrections, Retractions
    • Illustrations and Tables
    • Nomenclature
    • Abbreviations and Conventions
    • Publication Fees
    • Ethics Resources and Policies
  • About the Journal
    • About AAC
    • Editor in Chief
    • Editorial Board
    • For Reviewers
    • For the Media
    • For Librarians
    • For Advertisers
    • Alerts
    • AAC Podcast
    • RSS
    • FAQ
  • Subscribe
    • Members
    • Institutions
  • ASM
    • Antimicrobial Agents and Chemotherapy
    • Applied and Environmental Microbiology
    • Clinical Microbiology Reviews
    • Clinical and Vaccine Immunology
    • EcoSal Plus
    • Eukaryotic Cell
    • Infection and Immunity
    • Journal of Bacteriology
    • Journal of Clinical Microbiology
    • Journal of Microbiology & Biology Education
    • Journal of Virology
    • mBio
    • Microbiology and Molecular Biology Reviews
    • Microbiology Resource Announcements
    • Microbiology Spectrum
    • Molecular and Cellular Biology
    • mSphere
    • mSystems

User menu

  • Log in
  • My alerts
  • My Cart

Search

  • Advanced search
Antimicrobial Agents and Chemotherapy
publisher-logosite-logo

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Accepted Manuscripts
    • COVID-19 Special Collection
    • Archive
    • Minireviews
  • For Authors
    • Submit a Manuscript
    • Scope
    • Editorial Policy
    • Submission, Review, & Publication Processes
    • Organization and Format
    • Errata, Author Corrections, Retractions
    • Illustrations and Tables
    • Nomenclature
    • Abbreviations and Conventions
    • Publication Fees
    • Ethics Resources and Policies
  • About the Journal
    • About AAC
    • Editor in Chief
    • Editorial Board
    • For Reviewers
    • For the Media
    • For Librarians
    • For Advertisers
    • Alerts
    • AAC Podcast
    • RSS
    • FAQ
  • Subscribe
    • Members
    • Institutions
Comparative Study | Journal Article | Research Support, Non-U.S. Gov't

In vitro antimicrobial activities and spectra of U-100592 and U-100766, two novel fluorinated oxazolidinones.

R N Jones, D M Johnson, M E Erwin
R N Jones
Department of Pathology, University of Iowa College of Medicine, Iowa City 52242, USA.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
D M Johnson
Department of Pathology, University of Iowa College of Medicine, Iowa City 52242, USA.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
M E Erwin
Department of Pathology, University of Iowa College of Medicine, Iowa City 52242, USA.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
DOI: 10.1128/AAC.40.3.720
  • Article
  • Info & Metrics
  • PDF
Loading

ABSTRACT

Two new fluorinated oxazolidinones, U-100592 and U-100766, were evaluated against more than 659 gram-positive and -negative organisms and compared with glycopeptides, erythromycin, clindamycin, clinafloxacin, and chloramphenicol. U-100592 and U-100766 were usually equally potent, but the MICs at which 90% of the isolates are inhibited (MIC90s) of U-100592 for some staphylococci and enterococci were slightly lower than those of U-100766 (1 versus 2 micrograms/ml). The MIC90 of U-100592 and U-100766 for oxacillin-resistant Staphylococcus aureus was 2 micrograms/ml, the same as observed for oxacillin-susceptible strains. The oxazolidinone MICs for other Staphylococcus spp. were < or = 2 micrograms/ml (MIC50, 0.5 to 1 microgram/ml). All enterococci were inhibited by < or = 4 and < or = 2 micrograms of U-100592 and U-100766 per ml, respectively. Against 152 vancomycin-resistant enterococci (five species), both compounds had a narrow range of MICs (0.25 to 2 micrograms/ml) and a MIC90 of 1 microgram/ml. Corynebacterium jeikeium, Bacillus spp., and all tested streptococci were inhibited (< or = 4 micrograms/ml). Members of the family Enterobacteriaceae and other gram-negative bacilli were not susceptible (MIC50, > 64 micrograms/ml) to either oxazolidinone. Three potencies of U-100592 and U-100766 disks were tested (5, 15, and 30 micrograms), and acceptable correlations (r = 0.81 to 0.90) with the measured MICs were observed. Best discrimination of the tentatively susceptible organisms (MICs, < or = 4 micrograms/ml) was demonstrated with the 30-micrograms disk concentration. The oxazolidinones demonstrated a dominant bacteristatic action. These oxazolidinones (U-100592 and U-100766) appear promising for treatment of gram-positive organisms that demonstrate resistance to contemporary therapeutic agents.

PreviousNext
Back to top
Download PDF
Citation Tools
In vitro antimicrobial activities and spectra of U-100592 and U-100766, two novel fluorinated oxazolidinones.
R N Jones, D M Johnson, M E Erwin
Antimicrobial Agents and Chemotherapy Mar 1996, 40 (3) 720-726; DOI: 10.1128/AAC.40.3.720

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Print

Alerts
Sign In to Email Alerts with your Email Address
Email

Thank you for sharing this Antimicrobial Agents and Chemotherapy article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
In vitro antimicrobial activities and spectra of U-100592 and U-100766, two novel fluorinated oxazolidinones.
(Your Name) has forwarded a page to you from Antimicrobial Agents and Chemotherapy
(Your Name) thought you would be interested in this article in Antimicrobial Agents and Chemotherapy.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
In vitro antimicrobial activities and spectra of U-100592 and U-100766, two novel fluorinated oxazolidinones.
R N Jones, D M Johnson, M E Erwin
Antimicrobial Agents and Chemotherapy Mar 1996, 40 (3) 720-726; DOI: 10.1128/AAC.40.3.720
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Top
  • Article
  • Info & Metrics
  • PDF

Related Articles

Cited By...

About

  • About AAC
  • Editor in Chief
  • Editorial Board
  • Policies
  • For Reviewers
  • For the Media
  • For Librarians
  • For Advertisers
  • Alerts
  • AAC Podcast
  • RSS
  • FAQ
  • Permissions
  • Journal Announcements

Authors

  • ASM Author Center
  • Submit a Manuscript
  • Article Types
  • Ethics
  • Contact Us

Follow #AACJournal

@ASMicrobiology

       

ASM Journals

ASM journals are the most prominent publications in the field, delivering up-to-date and authoritative coverage of both basic and clinical microbiology.

About ASM | Contact Us | Press Room

 

ASM is a member of

Scientific Society Publisher Alliance

 

American Society for Microbiology
1752 N St. NW
Washington, DC 20036
Phone: (202) 737-3600

Copyright © 2021 American Society for Microbiology | Privacy Policy | Website feedback

Print ISSN: 0066-4804; Online ISSN: 1098-6596