Skip to main content
  • ASM
    • Antimicrobial Agents and Chemotherapy
    • Applied and Environmental Microbiology
    • Clinical Microbiology Reviews
    • Clinical and Vaccine Immunology
    • EcoSal Plus
    • Eukaryotic Cell
    • Infection and Immunity
    • Journal of Bacteriology
    • Journal of Clinical Microbiology
    • Journal of Microbiology & Biology Education
    • Journal of Virology
    • mBio
    • Microbiology and Molecular Biology Reviews
    • Microbiology Resource Announcements
    • Microbiology Spectrum
    • Molecular and Cellular Biology
    • mSphere
    • mSystems
  • Log in
  • My alerts
  • Log out
  • My Cart

Main menu

  • Home
  • Articles
    • Current Issue
    • Accepted Manuscripts
    • Archive
    • Minireviews
  • For Authors
    • Submit a Manuscript
    • Scope
    • Editorial Policy
    • Submission, Review, & Publication Processes
    • Organization and Format
    • Errata, Author Corrections, Retractions
    • Illustrations and Tables
    • Nomenclature
    • Abbreviations and Conventions
    • Publication Fees
    • Ethics Resources and Policies
  • About the Journal
    • About AAC
    • Editor in Chief
    • Editorial Board
    • For Reviewers
    • For the Media
    • For Librarians
    • For Advertisers
    • Alerts
    • RSS
    • FAQ
  • Subscribe
    • Members
    • Institutions
  • ASM
    • Antimicrobial Agents and Chemotherapy
    • Applied and Environmental Microbiology
    • Clinical Microbiology Reviews
    • Clinical and Vaccine Immunology
    • EcoSal Plus
    • Eukaryotic Cell
    • Infection and Immunity
    • Journal of Bacteriology
    • Journal of Clinical Microbiology
    • Journal of Microbiology & Biology Education
    • Journal of Virology
    • mBio
    • Microbiology and Molecular Biology Reviews
    • Microbiology Resource Announcements
    • Microbiology Spectrum
    • Molecular and Cellular Biology
    • mSphere
    • mSystems

User menu

  • Log in
  • My alerts
  • Log out
  • My Cart

Search

  • Advanced search
Antimicrobial Agents and Chemotherapy
publisher-logosite-logo

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Accepted Manuscripts
    • Archive
    • Minireviews
  • For Authors
    • Submit a Manuscript
    • Scope
    • Editorial Policy
    • Submission, Review, & Publication Processes
    • Organization and Format
    • Errata, Author Corrections, Retractions
    • Illustrations and Tables
    • Nomenclature
    • Abbreviations and Conventions
    • Publication Fees
    • Ethics Resources and Policies
  • About the Journal
    • About AAC
    • Editor in Chief
    • Editorial Board
    • For Reviewers
    • For the Media
    • For Librarians
    • For Advertisers
    • Alerts
    • RSS
    • FAQ
  • Subscribe
    • Members
    • Institutions
Comparative Study | Journal Article | Research Support, Non-U.S. Gov't

Characterization of the penA and penR genes of Burkholderia cepacia 249 which encode the chromosomal class A penicillinase and its LysR-type transcriptional regulator.

S Trépanier, A Prince, A Huletsky
S Trépanier
Département de Microbiologie, Pavillon Marchand, Université Laval, Ste-Foy, Québec, Canada.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
A Prince
Département de Microbiologie, Pavillon Marchand, Université Laval, Ste-Foy, Québec, Canada.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
A Huletsky
Département de Microbiologie, Pavillon Marchand, Université Laval, Ste-Foy, Québec, Canada.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
DOI: 10.1128/AAC.41.11.2399
  • Article
  • Info & Metrics
  • PDF
Loading

ABSTRACT

Burkholderia cepacia is recognized as an important pathogen in the lung infections of patients with cystic fibrosis. An inducible beta-lactamase activity has been associated with increased resistance to beta-lactam antibiotics in clinical isolates of B. cepacia. In this study, we report the revised sequence of the penA gene, which encodes the inducible penicillinase of B. cepacia, and show that it belongs to the molecular class A beta-lactamases and exhibits a high degree of similarity to the chromosomal beta-lactamase of Klebsiella oxytoca. Analysis of the nucleotide sequence of the DNA region directly upstream of the penA coding sequence revealed an open reading frame (penR), the transcription of which was oriented opposite to that of penA and whose initiation was 130 bp away from that of penA. Two potential ribosome-binding sites and two overlapping -10 and -35 promoter sequences were identified in the intercistronic region. The predicted translation product of penR was a polypeptide of 301 amino acids with an estimated molecular size of 33.2 kDa. The deduced polypeptide of penR showed a high degree of similarity with AmpR-like transcriptional activators of class A and C beta-lactamases, with identities of 59 and 58.7% with Pseudomonas aeruginosa PAO1 AmpR and Proteus vulgaris B317 CumR, respectively. The N-terminal portion of B. cepacia PenR was predicted to include a helix-turn-helix motif, which may bind the LysR motif identified in the intercistronic region. Induction of PenA by imipenem was shown to be dependent upon the presence of PenR. Expression of the cloned B. cepacia penA and penR genes in Escherichia coli SNO302 (ampD) resulted in a high basal and hyperinducible PenA activity. These results suggest that the regulation of the PenA penicillinase of B. cepacia 249 is similar to that observed in other class A and class C beta-lactamases that are under the control of a divergently transcribed AmpR-like regulator.

PreviousNext
Back to top
Download PDF
Citation Tools
Characterization of the penA and penR genes of Burkholderia cepacia 249 which encode the chromosomal class A penicillinase and its LysR-type transcriptional regulator.
S Trépanier, A Prince, A Huletsky
Antimicrobial Agents and Chemotherapy Nov 1997, 41 (11) 2399-2405; DOI: 10.1128/AAC.41.11.2399

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Print

Alerts
Sign In to Email Alerts with your Email Address
Email

Thank you for sharing this Antimicrobial Agents and Chemotherapy article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Characterization of the penA and penR genes of Burkholderia cepacia 249 which encode the chromosomal class A penicillinase and its LysR-type transcriptional regulator.
(Your Name) has forwarded a page to you from Antimicrobial Agents and Chemotherapy
(Your Name) thought you would be interested in this article in Antimicrobial Agents and Chemotherapy.
Share
Characterization of the penA and penR genes of Burkholderia cepacia 249 which encode the chromosomal class A penicillinase and its LysR-type transcriptional regulator.
S Trépanier, A Prince, A Huletsky
Antimicrobial Agents and Chemotherapy Nov 1997, 41 (11) 2399-2405; DOI: 10.1128/AAC.41.11.2399
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Top
  • Article
  • Info & Metrics
  • PDF

Related Articles

Cited By...

About

  • About AAC
  • Editor in Chief
  • Editorial Board
  • Policies
  • For Reviewers
  • For the Media
  • For Librarians
  • For Advertisers
  • Alerts
  • RSS
  • FAQ
  • Permissions
  • Journal Announcements

Authors

  • ASM Author Center
  • Submit a Manuscript
  • Article Types
  • Ethics
  • Contact Us

Follow #AACJournal

@ASMicrobiology

       

ASM Journals

ASM journals are the most prominent publications in the field, delivering up-to-date and authoritative coverage of both basic and clinical microbiology.

About ASM | Contact Us | Press Room

 

ASM is a member of

Scientific Society Publisher Alliance

Copyright © 2019 American Society for Microbiology | Privacy Policy | Website feedback

Print ISSN: 0066-4804; Online ISSN: 1098-6596