Skip to main content
  • ASM
    • Antimicrobial Agents and Chemotherapy
    • Applied and Environmental Microbiology
    • Clinical Microbiology Reviews
    • Clinical and Vaccine Immunology
    • EcoSal Plus
    • Eukaryotic Cell
    • Infection and Immunity
    • Journal of Bacteriology
    • Journal of Clinical Microbiology
    • Journal of Microbiology & Biology Education
    • Journal of Virology
    • mBio
    • Microbiology and Molecular Biology Reviews
    • Microbiology Resource Announcements
    • Microbiology Spectrum
    • Molecular and Cellular Biology
    • mSphere
    • mSystems
  • Log in
  • My alerts
  • My Cart

Main menu

  • Home
  • Articles
    • Current Issue
    • Accepted Manuscripts
    • COVID-19 Special Collection
    • Archive
    • Minireviews
  • For Authors
    • Submit a Manuscript
    • Scope
    • Editorial Policy
    • Submission, Review, & Publication Processes
    • Organization and Format
    • Errata, Author Corrections, Retractions
    • Illustrations and Tables
    • Nomenclature
    • Abbreviations and Conventions
    • Publication Fees
    • Ethics Resources and Policies
  • About the Journal
    • About AAC
    • Editor in Chief
    • Editorial Board
    • For Reviewers
    • For the Media
    • For Librarians
    • For Advertisers
    • Alerts
    • AAC Podcast
    • RSS
    • FAQ
  • Subscribe
    • Members
    • Institutions
  • ASM
    • Antimicrobial Agents and Chemotherapy
    • Applied and Environmental Microbiology
    • Clinical Microbiology Reviews
    • Clinical and Vaccine Immunology
    • EcoSal Plus
    • Eukaryotic Cell
    • Infection and Immunity
    • Journal of Bacteriology
    • Journal of Clinical Microbiology
    • Journal of Microbiology & Biology Education
    • Journal of Virology
    • mBio
    • Microbiology and Molecular Biology Reviews
    • Microbiology Resource Announcements
    • Microbiology Spectrum
    • Molecular and Cellular Biology
    • mSphere
    • mSystems

User menu

  • Log in
  • My alerts
  • My Cart

Search

  • Advanced search
Antimicrobial Agents and Chemotherapy
publisher-logosite-logo

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Accepted Manuscripts
    • COVID-19 Special Collection
    • Archive
    • Minireviews
  • For Authors
    • Submit a Manuscript
    • Scope
    • Editorial Policy
    • Submission, Review, & Publication Processes
    • Organization and Format
    • Errata, Author Corrections, Retractions
    • Illustrations and Tables
    • Nomenclature
    • Abbreviations and Conventions
    • Publication Fees
    • Ethics Resources and Policies
  • About the Journal
    • About AAC
    • Editor in Chief
    • Editorial Board
    • For Reviewers
    • For the Media
    • For Librarians
    • For Advertisers
    • Alerts
    • AAC Podcast
    • RSS
    • FAQ
  • Subscribe
    • Members
    • Institutions
Journal Article | Research Support, U.S. Gov't, P.H.S.

Increased mRNA levels of ERG16, CDR, and MDR1 correlate with increases in azole resistance in Candida albicans isolates from a patient infected with human immunodeficiency virus.

T C White
T C White
Department of Pathobiology, School of Public Health and Community Medicine, University of Washington, and Seattle Biomedical Research Institute, 98109, USA. tedwhite@u.washington.edu
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
DOI: 10.1128/AAC.41.7.1482
  • Article
  • Info & Metrics
  • PDF
Loading

ABSTRACT

Resistance to antifungal drugs, specifically azoles such as fluconazole, in the opportunistic yeast Candida albicans has become an increasing problem in human immunodeficiency virus (HIV)-infected individuals. The molecular mechanisms responsible for this resistance have only recently become apparent and can include alterations in the target enzyme of the azole drugs (lanosterol 14alpha demethylase [14DM]), or in various efflux pumps from both the ABC transporter and major facilitator gene families. To determine which of these possible mechanisms was associated with the development of drug resistance in a particular case, mRNA levels have been studied in a series of 17 clinical isolates taken from a single HIV-infected patient over 2 years, during which time the levels of fluconazole resistance of the strain increased over 200-fold. Using Northern blot analysis of steady-state levels of total RNA from these isolates, we observed increased mRNA levels of ERG16 (the 14DM-encoding gene), CDR1 (an ABC transporter), and MDR1 (a major facilitator) in this series. The timing of the increase in mRNA levels of each of these genes correlated with increases in fluconazole resistance of the isolates. Increased mRNA levels were not observed for three other ABC transporters, two other genes in the ergosterol biosynthetic pathway, or the NADPH-cytochrome P-450 oxidoreductase gene that transfers electrons from NADPH to 14DM. Increases in mRNA levels of ERG16 and CDR1 correlated with increased cross-resistance to ketoconazole and itraconazole but not to amphotericin B. A compilation of the genetic alterations identified in this series suggests that resistance develops gradually and is the sum of several different changes, all of which contribute to the final resistant phenotype.

PreviousNext
Back to top
Download PDF
Citation Tools
Increased mRNA levels of ERG16, CDR, and MDR1 correlate with increases in azole resistance in Candida albicans isolates from a patient infected with human immunodeficiency virus.
T C White
Antimicrobial Agents and Chemotherapy Jul 1997, 41 (7) 1482-1487; DOI: 10.1128/AAC.41.7.1482

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Print

Alerts
Sign In to Email Alerts with your Email Address
Email

Thank you for sharing this Antimicrobial Agents and Chemotherapy article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Increased mRNA levels of ERG16, CDR, and MDR1 correlate with increases in azole resistance in Candida albicans isolates from a patient infected with human immunodeficiency virus.
(Your Name) has forwarded a page to you from Antimicrobial Agents and Chemotherapy
(Your Name) thought you would be interested in this article in Antimicrobial Agents and Chemotherapy.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
Increased mRNA levels of ERG16, CDR, and MDR1 correlate with increases in azole resistance in Candida albicans isolates from a patient infected with human immunodeficiency virus.
T C White
Antimicrobial Agents and Chemotherapy Jul 1997, 41 (7) 1482-1487; DOI: 10.1128/AAC.41.7.1482
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Top
  • Article
  • Info & Metrics
  • PDF

Related Articles

Cited By...

About

  • About AAC
  • Editor in Chief
  • Editorial Board
  • Policies
  • For Reviewers
  • For the Media
  • For Librarians
  • For Advertisers
  • Alerts
  • AAC Podcast
  • RSS
  • FAQ
  • Permissions
  • Journal Announcements

Authors

  • ASM Author Center
  • Submit a Manuscript
  • Article Types
  • Ethics
  • Contact Us

Follow #AACJournal

@ASMicrobiology

       

ASM Journals

ASM journals are the most prominent publications in the field, delivering up-to-date and authoritative coverage of both basic and clinical microbiology.

About ASM | Contact Us | Press Room

 

ASM is a member of

Scientific Society Publisher Alliance

 

American Society for Microbiology
1752 N St. NW
Washington, DC 20036
Phone: (202) 737-3600

Copyright © 2021 American Society for Microbiology | Privacy Policy | Website feedback

Print ISSN: 0066-4804; Online ISSN: 1098-6596