Skip to main content
  • ASM
    • Antimicrobial Agents and Chemotherapy
    • Applied and Environmental Microbiology
    • Clinical Microbiology Reviews
    • Clinical and Vaccine Immunology
    • EcoSal Plus
    • Eukaryotic Cell
    • Infection and Immunity
    • Journal of Bacteriology
    • Journal of Clinical Microbiology
    • Journal of Microbiology & Biology Education
    • Journal of Virology
    • mBio
    • Microbiology and Molecular Biology Reviews
    • Microbiology Resource Announcements
    • Microbiology Spectrum
    • Molecular and Cellular Biology
    • mSphere
    • mSystems
  • Log in
  • My alerts
  • My Cart

Main menu

  • Home
  • Articles
    • Current Issue
    • Accepted Manuscripts
    • COVID-19 Special Collection
    • Archive
    • Minireviews
  • For Authors
    • Submit a Manuscript
    • Scope
    • Editorial Policy
    • Submission, Review, & Publication Processes
    • Organization and Format
    • Errata, Author Corrections, Retractions
    • Illustrations and Tables
    • Nomenclature
    • Abbreviations and Conventions
    • Publication Fees
    • Ethics Resources and Policies
  • About the Journal
    • About AAC
    • Editor in Chief
    • Editorial Board
    • For Reviewers
    • For the Media
    • For Librarians
    • For Advertisers
    • Alerts
    • AAC Podcast
    • RSS
    • FAQ
  • Subscribe
    • Members
    • Institutions
  • ASM
    • Antimicrobial Agents and Chemotherapy
    • Applied and Environmental Microbiology
    • Clinical Microbiology Reviews
    • Clinical and Vaccine Immunology
    • EcoSal Plus
    • Eukaryotic Cell
    • Infection and Immunity
    • Journal of Bacteriology
    • Journal of Clinical Microbiology
    • Journal of Microbiology & Biology Education
    • Journal of Virology
    • mBio
    • Microbiology and Molecular Biology Reviews
    • Microbiology Resource Announcements
    • Microbiology Spectrum
    • Molecular and Cellular Biology
    • mSphere
    • mSystems

User menu

  • Log in
  • My alerts
  • My Cart

Search

  • Advanced search
Antimicrobial Agents and Chemotherapy
publisher-logosite-logo

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Accepted Manuscripts
    • COVID-19 Special Collection
    • Archive
    • Minireviews
  • For Authors
    • Submit a Manuscript
    • Scope
    • Editorial Policy
    • Submission, Review, & Publication Processes
    • Organization and Format
    • Errata, Author Corrections, Retractions
    • Illustrations and Tables
    • Nomenclature
    • Abbreviations and Conventions
    • Publication Fees
    • Ethics Resources and Policies
  • About the Journal
    • About AAC
    • Editor in Chief
    • Editorial Board
    • For Reviewers
    • For the Media
    • For Librarians
    • For Advertisers
    • Alerts
    • AAC Podcast
    • RSS
    • FAQ
  • Subscribe
    • Members
    • Institutions
Analytical Procedures

Quantitative PCR Assay To MeasureAspergillus fumigatus Burden in a Murine Model of Disseminated Aspergillosis: Demonstration of Efficacy of Caspofungin Acetate

J. C. Bowman, G. K. Abruzzo, J. W. Anderson, A. M. Flattery, C. J. Gill, V. B. Pikounis, D. M. Schmatz, P. A. Liberator, C. M. Douglas
J. C. Bowman
Departments of Human and Animal Infectious Disease Research, and
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
G. K. Abruzzo
Departments of Human and Animal Infectious Disease Research, and
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
J. W. Anderson
Departments of Human and Animal Infectious Disease Research, and
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
A. M. Flattery
Departments of Human and Animal Infectious Disease Research, and
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
C. J. Gill
Departments of Human and Animal Infectious Disease Research, and
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
V. B. Pikounis
Biometrics Research, Merck Research Laboratories, Rahway, New Jersey 07065-0900
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
D. M. Schmatz
Departments of Human and Animal Infectious Disease Research, and
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
P. A. Liberator
Departments of Human and Animal Infectious Disease Research, and
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
C. M. Douglas
Departments of Human and Animal Infectious Disease Research, and
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
DOI: 10.1128/AAC.45.12.3474-3481.2001
  • Article
  • Figures & Data
  • Info & Metrics
  • PDF
Loading

ABSTRACT

Caspofungin acetate (MK-0991) is an antifungal antibiotic that inhibits the synthesis of 1,3-β-d-glucan, an essential component of the cell wall of several pathogenic fungi. Caspofungin acetate was recently approved for the treatment of invasive aspergillosis in patients who are refractory to or intolerant of other therapies. The activity of 1,3-β-d-glucan synthesis inhibitors against Aspergillus fumigatus has been evaluated in animal models of pulmonary or disseminated disease by using prolongation of survival or reduction in tissue CFU as assay endpoints. Because these methods suffer from limited sensitivity or poor correlation with fungal growth, we have developed a quantitative PCR-based (qPCR) (TaqMan) assay to monitor disease progression and measure drug efficacy. A. fumigatus added to naı̈ve, uninfected kidneys as either ungerminated conidia or small germlings yielded a linear qPCR response over at least 4 orders of magnitude. In a murine model of disseminated aspergillosis, a burden of A. fumigatus was detected in each of five different organs at 4 days postinfection by the qPCR assay, and the mean fungal load in these organs was 1.2 to 3.5 log10 units greater than mean values determined by CFU measurement. When used to monitor disease progression in infected mice, the qPCR assay detected an increase of nearly 4 log10 conidial equivalents/g of kidney between days 1 and 4 following infection, with a peak fungal burden that coincided with the onset of significant mortality. Traditional CFU methodology detected only a marginal increase in fungal load in the same tissues. In contrast, when mice were infected with Candida albicans, which does not form true mycelia in tissues, quantitation of kidney burden by both qPCR and CFU assays was strongly correlated as the infection progressed. Finally, treatment of mice with induced disseminated aspergillosis with either caspofungin or amphotericin B reduced the A. fumigatus burden in infected kidneys to the limit of detection for the qPCR assay. Because of its much larger dynamic range, the qPCR assay is superior to traditional CFU determination for monitoring the progression of disseminated aspergillosis and evaluating the activity of antifungal antibiotics against A. fumigatus.

  • Copyright © 2001 American Society for Microbiology
View Full Text
PreviousNext
Back to top
Download PDF
Citation Tools
Quantitative PCR Assay To MeasureAspergillus fumigatus Burden in a Murine Model of Disseminated Aspergillosis: Demonstration of Efficacy of Caspofungin Acetate
J. C. Bowman, G. K. Abruzzo, J. W. Anderson, A. M. Flattery, C. J. Gill, V. B. Pikounis, D. M. Schmatz, P. A. Liberator, C. M. Douglas
Antimicrobial Agents and Chemotherapy Dec 2001, 45 (12) 3474-3481; DOI: 10.1128/AAC.45.12.3474-3481.2001

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Print

Alerts
Sign In to Email Alerts with your Email Address
Email

Thank you for sharing this Antimicrobial Agents and Chemotherapy article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Quantitative PCR Assay To MeasureAspergillus fumigatus Burden in a Murine Model of Disseminated Aspergillosis: Demonstration of Efficacy of Caspofungin Acetate
(Your Name) has forwarded a page to you from Antimicrobial Agents and Chemotherapy
(Your Name) thought you would be interested in this article in Antimicrobial Agents and Chemotherapy.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
Quantitative PCR Assay To MeasureAspergillus fumigatus Burden in a Murine Model of Disseminated Aspergillosis: Demonstration of Efficacy of Caspofungin Acetate
J. C. Bowman, G. K. Abruzzo, J. W. Anderson, A. M. Flattery, C. J. Gill, V. B. Pikounis, D. M. Schmatz, P. A. Liberator, C. M. Douglas
Antimicrobial Agents and Chemotherapy Dec 2001, 45 (12) 3474-3481; DOI: 10.1128/AAC.45.12.3474-3481.2001
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Top
  • Article
    • ABSTRACT
    • MATERIALS AND METHODS
    • RESULTS
    • DISCUSSION
    • ACKNOWLEDGMENTS
    • FOOTNOTES
    • REFERENCES
  • Figures & Data
  • Info & Metrics
  • PDF

KEYWORDS

Anti-Bacterial Agents
antifungal agents
aspergillosis
Aspergillus fumigatus
peptides
Peptides, Cyclic

Related Articles

Cited By...

About

  • About AAC
  • Editor in Chief
  • Editorial Board
  • Policies
  • For Reviewers
  • For the Media
  • For Librarians
  • For Advertisers
  • Alerts
  • AAC Podcast
  • RSS
  • FAQ
  • Permissions
  • Journal Announcements

Authors

  • ASM Author Center
  • Submit a Manuscript
  • Article Types
  • Ethics
  • Contact Us

Follow #AACJournal

@ASMicrobiology

       

ASM Journals

ASM journals are the most prominent publications in the field, delivering up-to-date and authoritative coverage of both basic and clinical microbiology.

About ASM | Contact Us | Press Room

 

ASM is a member of

Scientific Society Publisher Alliance

 

American Society for Microbiology
1752 N St. NW
Washington, DC 20036
Phone: (202) 737-3600

Copyright © 2021 American Society for Microbiology | Privacy Policy | Website feedback

Print ISSN: 0066-4804; Online ISSN: 1098-6596