Skip to main content
  • ASM
    • Antimicrobial Agents and Chemotherapy
    • Applied and Environmental Microbiology
    • Clinical Microbiology Reviews
    • Clinical and Vaccine Immunology
    • EcoSal Plus
    • Eukaryotic Cell
    • Infection and Immunity
    • Journal of Bacteriology
    • Journal of Clinical Microbiology
    • Journal of Microbiology & Biology Education
    • Journal of Virology
    • mBio
    • Microbiology and Molecular Biology Reviews
    • Microbiology Resource Announcements
    • Microbiology Spectrum
    • Molecular and Cellular Biology
    • mSphere
    • mSystems
  • Log in
  • My alerts
  • My Cart

Main menu

  • Home
  • Articles
    • Current Issue
    • Accepted Manuscripts
    • COVID-19 Special Collection
    • Archive
    • Minireviews
  • For Authors
    • Submit a Manuscript
    • Scope
    • Editorial Policy
    • Submission, Review, & Publication Processes
    • Organization and Format
    • Errata, Author Corrections, Retractions
    • Illustrations and Tables
    • Nomenclature
    • Abbreviations and Conventions
    • Publication Fees
    • Ethics Resources and Policies
  • About the Journal
    • About AAC
    • Editor in Chief
    • Editorial Board
    • For Reviewers
    • For the Media
    • For Librarians
    • For Advertisers
    • Alerts
    • AAC Podcast
    • RSS
    • FAQ
  • Subscribe
    • Members
    • Institutions
  • ASM
    • Antimicrobial Agents and Chemotherapy
    • Applied and Environmental Microbiology
    • Clinical Microbiology Reviews
    • Clinical and Vaccine Immunology
    • EcoSal Plus
    • Eukaryotic Cell
    • Infection and Immunity
    • Journal of Bacteriology
    • Journal of Clinical Microbiology
    • Journal of Microbiology & Biology Education
    • Journal of Virology
    • mBio
    • Microbiology and Molecular Biology Reviews
    • Microbiology Resource Announcements
    • Microbiology Spectrum
    • Molecular and Cellular Biology
    • mSphere
    • mSystems

User menu

  • Log in
  • My alerts
  • My Cart

Search

  • Advanced search
Antimicrobial Agents and Chemotherapy
publisher-logosite-logo

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Accepted Manuscripts
    • COVID-19 Special Collection
    • Archive
    • Minireviews
  • For Authors
    • Submit a Manuscript
    • Scope
    • Editorial Policy
    • Submission, Review, & Publication Processes
    • Organization and Format
    • Errata, Author Corrections, Retractions
    • Illustrations and Tables
    • Nomenclature
    • Abbreviations and Conventions
    • Publication Fees
    • Ethics Resources and Policies
  • About the Journal
    • About AAC
    • Editor in Chief
    • Editorial Board
    • For Reviewers
    • For the Media
    • For Librarians
    • For Advertisers
    • Alerts
    • AAC Podcast
    • RSS
    • FAQ
  • Subscribe
    • Members
    • Institutions
Pharmacology

Intrapulmonary Pharmacokinetics of Linezolid

John E. Conte Jr., Jeffrey A. Golden, Juliana Kipps, Elisabeth Zurlinden
John E. Conte Jr.
1Infectious Diseases Research Group, Department of Epidemiology & Biostatistics
2Department of Medicine, University of California, San Francisco, San Francisco, California 94143-0919
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: jconte@aids.ucsf.edu
Jeffrey A. Golden
2Department of Medicine, University of California, San Francisco, San Francisco, California 94143-0919
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Juliana Kipps
1Infectious Diseases Research Group, Department of Epidemiology & Biostatistics
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Elisabeth Zurlinden
1Infectious Diseases Research Group, Department of Epidemiology & Biostatistics
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
DOI: 10.1128/AAC.46.5.1475-1480.2002
  • Article
  • Figures & Data
  • Info & Metrics
  • PDF
Loading

ABSTRACT

In this study, our objective was to determine the steady-state intrapulmonary concentrations and pharmacokinetic parameters of orally administered linezolid in healthy volunteers. Linezolid (600 mg every 12 h for a total of five doses) was administered orally to 25 healthy adult male subjects. Each subgroup contained five subjects, who underwent bronchoscopy and bronchoalveolar lavage (BAL) 4, 8, 12, 24, or 48 h after administration of the last dose. Blood was obtained for drug assay prior to administration of the first dose and fifth dose and at the completion of bronchoscopy and BAL. Standardized bronchoscopy was performed without systemic sedation. The volume of epithelial lining fluid (ELF) recovered was calculated by the urea dilution method, and the total number of alveolar cells (AC) was counted in a hemocytometer after cytocentrifugation. Linezolid was measured in plasma by a high-pressure liquid chromatography (HPLC) technique and in BAL specimens and AC by a combined HPLC-mass spectrometry technique. Areas under the concentration-time curves (AUCs) for linezolid in plasma, ELF, and AC were derived by noncompartmental analysis. Half-lives for linezolid in plasma, ELF, and AC were calculated from the elimination rate constants derived from a monoexponential fit of the means of the observed concentrations at each time point. Concentrations (means ± standard deviations) in plasma, ELF, and AC, respectively, were 7.3 ± 4.9, 64.3 ± 33.1, and 2.2 ± 0.6 μg/ml at the 4-h BAL time point and 7.6 ± 1.7, 24.3 ± 13.3, and 1.4 ± 1.3 μg/ml at the 12-h BAL time point. Linezolid concentrations in plasma, ELF, and AC declined monoexponentially, with half-lives of 6.9, 7.0, and 5.7 h, respectively. For a MIC of 4, the 12-h plasma AUC/MIC and maximum concentration/MIC ratios were 34.6 and 3.9, respectively, and the percentage of time the drug remained above the MIC for the 12-h dosing interval was 100%; the corresponding ratios in ELF were 120 and 16.1, respectively, and the percentage of time the drug remained above the MIC was 100%. The long plasma and intrapulmonary linezolid half-lives and the percentage of time spent above the MIC of 100% of the dosing interval provide a pharmacokinetic rationale for drug administration every 12 h and indicate that linezolid is likely to be an effective agent for the treatment of pulmonary infections.

  • Copyright © 2002 American Society for Microbiology
View Full Text
PreviousNext
Back to top
Download PDF
Citation Tools
Intrapulmonary Pharmacokinetics of Linezolid
John E. Conte Jr., Jeffrey A. Golden, Juliana Kipps, Elisabeth Zurlinden
Antimicrobial Agents and Chemotherapy May 2002, 46 (5) 1475-1480; DOI: 10.1128/AAC.46.5.1475-1480.2002

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Print

Alerts
Sign In to Email Alerts with your Email Address
Email

Thank you for sharing this Antimicrobial Agents and Chemotherapy article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Intrapulmonary Pharmacokinetics of Linezolid
(Your Name) has forwarded a page to you from Antimicrobial Agents and Chemotherapy
(Your Name) thought you would be interested in this article in Antimicrobial Agents and Chemotherapy.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
Intrapulmonary Pharmacokinetics of Linezolid
John E. Conte Jr., Jeffrey A. Golden, Juliana Kipps, Elisabeth Zurlinden
Antimicrobial Agents and Chemotherapy May 2002, 46 (5) 1475-1480; DOI: 10.1128/AAC.46.5.1475-1480.2002
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Top
  • Article
    • ABSTRACT
    • MATERIALS AND METHODS
    • RESULTS
    • DISCUSSION
    • ACKNOWLEDGMENTS
    • FOOTNOTES
    • REFERENCES
  • Figures & Data
  • Info & Metrics
  • PDF

KEYWORDS

Acetamides
anti-infective agents
lung
oxazolidinones

Related Articles

Cited By...

About

  • About AAC
  • Editor in Chief
  • Editorial Board
  • Policies
  • For Reviewers
  • For the Media
  • For Librarians
  • For Advertisers
  • Alerts
  • AAC Podcast
  • RSS
  • FAQ
  • Permissions
  • Journal Announcements

Authors

  • ASM Author Center
  • Submit a Manuscript
  • Article Types
  • Ethics
  • Contact Us

Follow #AACJournal

@ASMicrobiology

       

ASM Journals

ASM journals are the most prominent publications in the field, delivering up-to-date and authoritative coverage of both basic and clinical microbiology.

About ASM | Contact Us | Press Room

 

ASM is a member of

Scientific Society Publisher Alliance

 

American Society for Microbiology
1752 N St. NW
Washington, DC 20036
Phone: (202) 737-3600

Copyright © 2021 American Society for Microbiology | Privacy Policy | Website feedback

Print ISSN: 0066-4804; Online ISSN: 1098-6596