Skip to main content
  • ASM
    • Antimicrobial Agents and Chemotherapy
    • Applied and Environmental Microbiology
    • Clinical Microbiology Reviews
    • Clinical and Vaccine Immunology
    • EcoSal Plus
    • Eukaryotic Cell
    • Infection and Immunity
    • Journal of Bacteriology
    • Journal of Clinical Microbiology
    • Journal of Microbiology & Biology Education
    • Journal of Virology
    • mBio
    • Microbiology and Molecular Biology Reviews
    • Microbiology Resource Announcements
    • Microbiology Spectrum
    • Molecular and Cellular Biology
    • mSphere
    • mSystems
  • Log in
  • My alerts
  • My Cart

Main menu

  • Home
  • Articles
    • Current Issue
    • Accepted Manuscripts
    • COVID-19 Special Collection
    • Archive
    • Minireviews
  • For Authors
    • Submit a Manuscript
    • Scope
    • Editorial Policy
    • Submission, Review, & Publication Processes
    • Organization and Format
    • Errata, Author Corrections, Retractions
    • Illustrations and Tables
    • Nomenclature
    • Abbreviations and Conventions
    • Publication Fees
    • Ethics Resources and Policies
  • About the Journal
    • About AAC
    • Editor in Chief
    • Editorial Board
    • For Reviewers
    • For the Media
    • For Librarians
    • For Advertisers
    • Alerts
    • AAC Podcast
    • RSS
    • FAQ
  • Subscribe
    • Members
    • Institutions
  • ASM
    • Antimicrobial Agents and Chemotherapy
    • Applied and Environmental Microbiology
    • Clinical Microbiology Reviews
    • Clinical and Vaccine Immunology
    • EcoSal Plus
    • Eukaryotic Cell
    • Infection and Immunity
    • Journal of Bacteriology
    • Journal of Clinical Microbiology
    • Journal of Microbiology & Biology Education
    • Journal of Virology
    • mBio
    • Microbiology and Molecular Biology Reviews
    • Microbiology Resource Announcements
    • Microbiology Spectrum
    • Molecular and Cellular Biology
    • mSphere
    • mSystems

User menu

  • Log in
  • My alerts
  • My Cart

Search

  • Advanced search
Antimicrobial Agents and Chemotherapy
publisher-logosite-logo

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Accepted Manuscripts
    • COVID-19 Special Collection
    • Archive
    • Minireviews
  • For Authors
    • Submit a Manuscript
    • Scope
    • Editorial Policy
    • Submission, Review, & Publication Processes
    • Organization and Format
    • Errata, Author Corrections, Retractions
    • Illustrations and Tables
    • Nomenclature
    • Abbreviations and Conventions
    • Publication Fees
    • Ethics Resources and Policies
  • About the Journal
    • About AAC
    • Editor in Chief
    • Editorial Board
    • For Reviewers
    • For the Media
    • For Librarians
    • For Advertisers
    • Alerts
    • AAC Podcast
    • RSS
    • FAQ
  • Subscribe
    • Members
    • Institutions
Mechanisms of Resistance

Cyclic AMP Signaling Pathway Modulates Susceptibility of Candida Species and Saccharomyces cerevisiae to Antifungal Azoles and Other Sterol Biosynthesis Inhibitors

Pooja Jain, Indira Akula, Thomas Edlind
Pooja Jain
Department of Microbiology & Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania 19129
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Indira Akula
Department of Microbiology & Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania 19129
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Thomas Edlind
Department of Microbiology & Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania 19129
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: edlind@drexel.edu
DOI: 10.1128/AAC.47.10.3195-3201.2003
  • Article
  • Figures & Data
  • Info & Metrics
  • PDF
Loading

ABSTRACT

Azoles are widely used antifungals; however, their efficacy is compromised by fungistatic activity and selection of resistant strains during treatment. Recent studies demonstrated roles for the protein kinase C and calcium signaling pathways in modulating azole activity. Here we explored a role for the signaling pathway mediated by cyclic AMP (cAMP), which is synthesized by the regulated action of adenylate cyclase (encoded by CDC35 in Candida albicans and CYR1 in Saccharomyces cerevisiae) and cyclase-associated protein (encoded by CAP1 and SRV2, respectively). Relative to wild-type strains, C. albicans and S. cerevisiae strains mutated in these genes were hypersusceptible to fluconazole (>4- to >16-fold-decreased 48-h MIC), itraconazole (>8- to >64-fold), or miconazole (16- to >64-fold). Similarly, they were hypersusceptible to terbinafine and fenpropimorph (2- to >16-fold), which, like azoles, inhibit sterol biosynthesis. Addition of cAMP to the medium at least partially reversed the hypersusceptibility of Ca-cdc35 and Sc-cyr1-2 mutants. An inhibitor of mammalian adenylate cyclase, MDL-12330A, was tested in combination with azoles; a synergistic effect was observed against azole-susceptible and -resistant strains of C. albicans and five of six non-C. albicans Candida species. Analysis of cAMP levels after glucose induction in the presence and absence of MDL-12330A confirmed that it acts by inhibiting cAMP synthesis in yeast. RNA analysis suggested that a defect in azole-dependent upregulation of the multidrug transporter gene CDR1 contributes to the hypersusceptibility of the Ca-cdc35 mutant. Our results implicate cAMP signaling in the yeast azole response; compounds similar to MDL-12330A may be useful adjuvants in azole therapy.

  • Copyright © 2003 American Society for Microbiology
View Full Text
PreviousNext
Back to top
Download PDF
Citation Tools
Cyclic AMP Signaling Pathway Modulates Susceptibility of Candida Species and Saccharomyces cerevisiae to Antifungal Azoles and Other Sterol Biosynthesis Inhibitors
Pooja Jain, Indira Akula, Thomas Edlind
Antimicrobial Agents and Chemotherapy Sep 2003, 47 (10) 3195-3201; DOI: 10.1128/AAC.47.10.3195-3201.2003

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Print

Alerts
Sign In to Email Alerts with your Email Address
Email

Thank you for sharing this Antimicrobial Agents and Chemotherapy article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Cyclic AMP Signaling Pathway Modulates Susceptibility of Candida Species and Saccharomyces cerevisiae to Antifungal Azoles and Other Sterol Biosynthesis Inhibitors
(Your Name) has forwarded a page to you from Antimicrobial Agents and Chemotherapy
(Your Name) thought you would be interested in this article in Antimicrobial Agents and Chemotherapy.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
Cyclic AMP Signaling Pathway Modulates Susceptibility of Candida Species and Saccharomyces cerevisiae to Antifungal Azoles and Other Sterol Biosynthesis Inhibitors
Pooja Jain, Indira Akula, Thomas Edlind
Antimicrobial Agents and Chemotherapy Sep 2003, 47 (10) 3195-3201; DOI: 10.1128/AAC.47.10.3195-3201.2003
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Top
  • Article
    • ABSTRACT
    • MATERIALS AND METHODS
    • RESULTS
    • DISCUSSION
    • ACKNOWLEDGMENTS
    • FOOTNOTES
    • REFERENCES
  • Figures & Data
  • Info & Metrics
  • PDF

KEYWORDS

antifungal agents
azoles
Candida
Cyclic AMP
Fungal Proteins
Protein Synthesis Inhibitors
Saccharomyces cerevisiae
Sterols

Related Articles

Cited By...

About

  • About AAC
  • Editor in Chief
  • Editorial Board
  • Policies
  • For Reviewers
  • For the Media
  • For Librarians
  • For Advertisers
  • Alerts
  • AAC Podcast
  • RSS
  • FAQ
  • Permissions
  • Journal Announcements

Authors

  • ASM Author Center
  • Submit a Manuscript
  • Article Types
  • Ethics
  • Contact Us

Follow #AACJournal

@ASMicrobiology

       

ASM Journals

ASM journals are the most prominent publications in the field, delivering up-to-date and authoritative coverage of both basic and clinical microbiology.

About ASM | Contact Us | Press Room

 

ASM is a member of

Scientific Society Publisher Alliance

 

American Society for Microbiology
1752 N St. NW
Washington, DC 20036
Phone: (202) 737-3600

Copyright © 2021 American Society for Microbiology | Privacy Policy | Website feedback

Print ISSN: 0066-4804; Online ISSN: 1098-6596