Skip to main content
  • ASM
    • Antimicrobial Agents and Chemotherapy
    • Applied and Environmental Microbiology
    • Clinical Microbiology Reviews
    • Clinical and Vaccine Immunology
    • EcoSal Plus
    • Eukaryotic Cell
    • Infection and Immunity
    • Journal of Bacteriology
    • Journal of Clinical Microbiology
    • Journal of Microbiology & Biology Education
    • Journal of Virology
    • mBio
    • Microbiology and Molecular Biology Reviews
    • Microbiology Resource Announcements
    • Microbiology Spectrum
    • Molecular and Cellular Biology
    • mSphere
    • mSystems
  • Log in
  • My alerts
  • My Cart

Main menu

  • Home
  • Articles
    • Current Issue
    • Accepted Manuscripts
    • COVID-19 Special Collection
    • Archive
    • Minireviews
  • For Authors
    • Submit a Manuscript
    • Scope
    • Editorial Policy
    • Submission, Review, & Publication Processes
    • Organization and Format
    • Errata, Author Corrections, Retractions
    • Illustrations and Tables
    • Nomenclature
    • Abbreviations and Conventions
    • Publication Fees
    • Ethics Resources and Policies
  • About the Journal
    • About AAC
    • Editor in Chief
    • Editorial Board
    • For Reviewers
    • For the Media
    • For Librarians
    • For Advertisers
    • Alerts
    • AAC Podcast
    • RSS
    • FAQ
  • Subscribe
    • Members
    • Institutions
  • ASM
    • Antimicrobial Agents and Chemotherapy
    • Applied and Environmental Microbiology
    • Clinical Microbiology Reviews
    • Clinical and Vaccine Immunology
    • EcoSal Plus
    • Eukaryotic Cell
    • Infection and Immunity
    • Journal of Bacteriology
    • Journal of Clinical Microbiology
    • Journal of Microbiology & Biology Education
    • Journal of Virology
    • mBio
    • Microbiology and Molecular Biology Reviews
    • Microbiology Resource Announcements
    • Microbiology Spectrum
    • Molecular and Cellular Biology
    • mSphere
    • mSystems

User menu

  • Log in
  • My alerts
  • My Cart

Search

  • Advanced search
Antimicrobial Agents and Chemotherapy
publisher-logosite-logo

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Accepted Manuscripts
    • COVID-19 Special Collection
    • Archive
    • Minireviews
  • For Authors
    • Submit a Manuscript
    • Scope
    • Editorial Policy
    • Submission, Review, & Publication Processes
    • Organization and Format
    • Errata, Author Corrections, Retractions
    • Illustrations and Tables
    • Nomenclature
    • Abbreviations and Conventions
    • Publication Fees
    • Ethics Resources and Policies
  • About the Journal
    • About AAC
    • Editor in Chief
    • Editorial Board
    • For Reviewers
    • For the Media
    • For Librarians
    • For Advertisers
    • Alerts
    • AAC Podcast
    • RSS
    • FAQ
  • Subscribe
    • Members
    • Institutions
Mechanisms of Resistance

Amino Acid Substitutions in Mosaic Penicillin-Binding Protein 2 Associated with Reduced Susceptibility to Cefixime in Clinical Isolates of Neisseria gonorrhoeae

Sho Takahata, Nami Senju, Yumi Osaki, Takuji Yoshida, Takashi Ida
Sho Takahata
Pharmaceutical Research Center, Meiji Seika Kaisha, Ltd., 760 Morooka-cho, Kohoku-ku, Yokohama 222-8567, Japan
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: sho_takahata@meiji.co.jp
Nami Senju
Pharmaceutical Research Center, Meiji Seika Kaisha, Ltd., 760 Morooka-cho, Kohoku-ku, Yokohama 222-8567, Japan
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Yumi Osaki
Pharmaceutical Research Center, Meiji Seika Kaisha, Ltd., 760 Morooka-cho, Kohoku-ku, Yokohama 222-8567, Japan
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Takuji Yoshida
Pharmaceutical Research Center, Meiji Seika Kaisha, Ltd., 760 Morooka-cho, Kohoku-ku, Yokohama 222-8567, Japan
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Takashi Ida
Pharmaceutical Research Center, Meiji Seika Kaisha, Ltd., 760 Morooka-cho, Kohoku-ku, Yokohama 222-8567, Japan
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
DOI: 10.1128/AAC.00626-06
  • Article
  • Figures & Data
  • Info & Metrics
  • PDF
Loading

ABSTRACT

The molecular mechanisms of reduced susceptibility to cefixime in clinical isolates of Neisseria gonorrhoeae, particularly amino acid substitutions in mosaic penicillin-binding protein 2 (PBP2), were examined. The complete sequence of ponA, penA, and por genes, encoding, respectively, PBP1, PBP2, and porin, were determined for 58 strains isolated in 2002 from Japan. Replacement of leucine 421 by proline in PBP1 and the mosaic-like structure of PBP2 were detected in 48 strains (82.8%) and 28 strains (48.3%), respectively. The presence of mosaic PBP2 was the main cause of the elevated cefixime MIC (4- to 64-fold). In order to identify the mutations responsible for the reduced susceptibility to cefixime in isolates with mosaic PBP2, penA genes with various mutations were transferred to a susceptible strain by genetic transformation. The susceptibility of partial recombinants and site-directed mutants revealed that the replacement of glycine 545 by serine (G545S) was the primary mutation, which led to a two- to fourfold increase in resistance to cephems. Replacement of isoleucine 312 by methionine (I312M) and valine 316 by threonine (V316T), in the presence of the G545S mutation, reduced susceptibility to cefixime, ceftibuten, and cefpodoxime by an additional fourfold. Therefore, three mutations (G545S, I312M, and V316T) in mosaic PBP2 were identified as the amino acid substitutions responsible for reduced susceptibility to cefixime in N. gonorrhoeae.

  • Copyright © 2006 American Society for Microbiology
View Full Text
PreviousNext
Back to top
Download PDF
Citation Tools
Amino Acid Substitutions in Mosaic Penicillin-Binding Protein 2 Associated with Reduced Susceptibility to Cefixime in Clinical Isolates of Neisseria gonorrhoeae
Sho Takahata, Nami Senju, Yumi Osaki, Takuji Yoshida, Takashi Ida
Antimicrobial Agents and Chemotherapy Oct 2006, 50 (11) 3638-3645; DOI: 10.1128/AAC.00626-06

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Print

Alerts
Sign In to Email Alerts with your Email Address
Email

Thank you for sharing this Antimicrobial Agents and Chemotherapy article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Amino Acid Substitutions in Mosaic Penicillin-Binding Protein 2 Associated with Reduced Susceptibility to Cefixime in Clinical Isolates of Neisseria gonorrhoeae
(Your Name) has forwarded a page to you from Antimicrobial Agents and Chemotherapy
(Your Name) thought you would be interested in this article in Antimicrobial Agents and Chemotherapy.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
Amino Acid Substitutions in Mosaic Penicillin-Binding Protein 2 Associated with Reduced Susceptibility to Cefixime in Clinical Isolates of Neisseria gonorrhoeae
Sho Takahata, Nami Senju, Yumi Osaki, Takuji Yoshida, Takashi Ida
Antimicrobial Agents and Chemotherapy Oct 2006, 50 (11) 3638-3645; DOI: 10.1128/AAC.00626-06
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Top
  • Article
    • ABSTRACT
    • MATERIALS AND METHODS
    • RESULTS
    • DISCUSSION
    • FOOTNOTES
    • REFERENCES
  • Figures & Data
  • Info & Metrics
  • PDF

KEYWORDS

cefixime
cephalosporins
Neisseria gonorrhoeae

Related Articles

Cited By...

About

  • About AAC
  • Editor in Chief
  • Editorial Board
  • Policies
  • For Reviewers
  • For the Media
  • For Librarians
  • For Advertisers
  • Alerts
  • AAC Podcast
  • RSS
  • FAQ
  • Permissions
  • Journal Announcements

Authors

  • ASM Author Center
  • Submit a Manuscript
  • Article Types
  • Ethics
  • Contact Us

Follow #AACJournal

@ASMicrobiology

       

ASM Journals

ASM journals are the most prominent publications in the field, delivering up-to-date and authoritative coverage of both basic and clinical microbiology.

About ASM | Contact Us | Press Room

 

ASM is a member of

Scientific Society Publisher Alliance

 

American Society for Microbiology
1752 N St. NW
Washington, DC 20036
Phone: (202) 737-3600

Copyright © 2021 American Society for Microbiology | Privacy Policy | Website feedback

Print ISSN: 0066-4804; Online ISSN: 1098-6596