Skip to main content
  • ASM
    • Antimicrobial Agents and Chemotherapy
    • Applied and Environmental Microbiology
    • Clinical Microbiology Reviews
    • Clinical and Vaccine Immunology
    • EcoSal Plus
    • Eukaryotic Cell
    • Infection and Immunity
    • Journal of Bacteriology
    • Journal of Clinical Microbiology
    • Journal of Microbiology & Biology Education
    • Journal of Virology
    • mBio
    • Microbiology and Molecular Biology Reviews
    • Microbiology Resource Announcements
    • Microbiology Spectrum
    • Molecular and Cellular Biology
    • mSphere
    • mSystems
  • Log in
  • My alerts
  • My Cart

Main menu

  • Home
  • Articles
    • Current Issue
    • Accepted Manuscripts
    • COVID-19 Special Collection
    • Archive
    • Minireviews
  • For Authors
    • Submit a Manuscript
    • Scope
    • Editorial Policy
    • Submission, Review, & Publication Processes
    • Organization and Format
    • Errata, Author Corrections, Retractions
    • Illustrations and Tables
    • Nomenclature
    • Abbreviations and Conventions
    • Publication Fees
    • Ethics Resources and Policies
  • About the Journal
    • About AAC
    • Editor in Chief
    • Editorial Board
    • For Reviewers
    • For the Media
    • For Librarians
    • For Advertisers
    • Alerts
    • AAC Podcast
    • RSS
    • FAQ
  • Subscribe
    • Members
    • Institutions
  • ASM
    • Antimicrobial Agents and Chemotherapy
    • Applied and Environmental Microbiology
    • Clinical Microbiology Reviews
    • Clinical and Vaccine Immunology
    • EcoSal Plus
    • Eukaryotic Cell
    • Infection and Immunity
    • Journal of Bacteriology
    • Journal of Clinical Microbiology
    • Journal of Microbiology & Biology Education
    • Journal of Virology
    • mBio
    • Microbiology and Molecular Biology Reviews
    • Microbiology Resource Announcements
    • Microbiology Spectrum
    • Molecular and Cellular Biology
    • mSphere
    • mSystems

User menu

  • Log in
  • My alerts
  • My Cart

Search

  • Advanced search
Antimicrobial Agents and Chemotherapy
publisher-logosite-logo

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Accepted Manuscripts
    • COVID-19 Special Collection
    • Archive
    • Minireviews
  • For Authors
    • Submit a Manuscript
    • Scope
    • Editorial Policy
    • Submission, Review, & Publication Processes
    • Organization and Format
    • Errata, Author Corrections, Retractions
    • Illustrations and Tables
    • Nomenclature
    • Abbreviations and Conventions
    • Publication Fees
    • Ethics Resources and Policies
  • About the Journal
    • About AAC
    • Editor in Chief
    • Editorial Board
    • For Reviewers
    • For the Media
    • For Librarians
    • For Advertisers
    • Alerts
    • AAC Podcast
    • RSS
    • FAQ
  • Subscribe
    • Members
    • Institutions
Minireview

β-Lactamase Nomenclature

George A. Jacoby
George A. Jacoby
Lahey Clinic, Burlington, Massachusetts
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: george.a.jacoby@lahey.org
DOI: 10.1128/AAC.50.4.1123-1129.2006
  • Article
  • Figures & Data
  • Info & Metrics
  • PDF
Loading

In the beginning, β-lactamases were designated by the name of the strain or plasmid that produced them, a practice that persists in such enzyme names as PC1 or P99. In 1975, the application of isoelectric focusing for β-lactamase characterization allowed many more enzymes to be distinguished (84). Subsequent β-lactamase nomenclature has been nothing if not creative. The enzymes have been named after substrates, biochemical properties, peculiarities of sequence, location of their discovery, location of the gene on the chromosome, strains of bacteria, the patient providing a sample, and, least modestly, the investigators who described them. One enzyme has even been named by what it is not (Nmc, standing for not metalloenzyme carbapenemase) (91). Figure 1 shows the frequency with which novel enzymes have been described in the literature and reflects not only the pace of discovery and increasingly sophisticated means of differentiating β-lactamases but also fashions in naming. Only recently have letters and not strain numbers been used consistently for designation.

In time, some β-lactamases have become families of more or less closely related enzymes. Currently, 150 TEM, 88 SHV, 88 OXA, 53 CTX-M, 22 IMP, 12 VIM, and smaller numbers in other enzyme families have been described (http://www.lahey.org/studies ). The TEM and SHV families are closely related, with individual members differing by only one to seven amino acids. Other families, for example, the CTX-M and IMP families, differ among themselves by as much as 20% in amino acid composition, while members of the OXA family can have almost 80% difference, because they have been grouped by activity on oxacillin and related substrates and not by primary structure. The Klebsiella oxytoca K1 or KOXY enzyme has also been subdivided into a growing series of OXY β-lactamases (38).

A few enzymes have been given more than one name (Table 1). Other synonymous names undoubtedly await recognition as more bla genes are sequenced. Some enzymes were given provisional names until their sequence demonstrated them to be TEM or SHV derivatives; examples are shown in Table 1, and others can be found at http://www.lahey.org/studies .

Sometimes, one name rather than another has caught on. Thus, CTX-M (6), rather than MEN (18) or TLB (Toho-1-like β-lactamase) (158), came to designate that family of enzymes, and the Toho enzymes have recently been assigned CTX-M numbers (http://www.lahey.org/studies ). Some names lost their logic after being created but are still in use; thus, the “Pseudomonas-specific enzymes,” PSE-1, PSE-2, and PSE-4, were soon found in Escherichia coli and other Enterobacteriaceae (76, 88, 123), and some CTX-M enzymes hydrolyze ceftazidime more efficiently than cefotaxime (112). For a time, plasmid-encoded β-lactamases were designated with all capital letters and chromosomally determined enzymes with only the first letter capitalized, but this distinction no longer holds. Since DNA sequencing facilitated characterization, the pace of discovery and naming has increased further. Because the rationale for existing names has not previously been collected in one place, a list of derivations follows with apologies for any omissions (Table 2). When the derivation was not provided in the original reference, it has been checked, if possible, with the originating author.

FIG. 1.
  • Open in new tab
  • Download powerpoint
FIG. 1.

Number of new β-lactamases reported per year.

View this table:
  • View inline
  • View popup
TABLE 1.

Enzymes with more than one name

View this table:
  • View inline
  • View popup
TABLE 2.

Origin of β-lactamase names

  • Copyright © 2006 American Society for Microbiology

REFERENCES

  1. 1.
    Arakawa, Y., M. Ohta, N. Kido, Y. Fujii, T. Komatsu, and N. Kato. 1986. Close evolutionary relationship between the chromosomally encoded β-lactamase gene of Klebsiella pneumoniae and the TEM β-lactamase gene mediated by R plasmids. FEBS Lett.207:69-74.
    OpenUrlCrossRefPubMedWeb of Science
  2. 2.
    Avison, M. B., and A. M. Simm. 2002. Sequence and genome context analysis of a new molecular class D β-lactamase gene from Legionella pneumophila. J. Antimicrob. Chemother.50:331-338.
    OpenUrlCrossRefPubMed
  3. 3.
    Barlow, M., and B. G. Hall. 2002. Origin and evolution of the AmpC β-lactamases of Citrobacter freundii. Antimicrob. Agents Chemother.46:1190-1198.
    OpenUrlAbstract/FREE Full Text
  4. 4.
    Barthelemy, M., J. Peduzzi, C. Verchere-Beaur, H. Ben Yaghlane, and R. Labia. 1986. Purification and biochemical properties of Pitton's type 2 beta-lactamase (SHV-1). Ann. Inst. Pasteur Microbiol.137B:19-27.
    OpenUrlCrossRef
  5. 5.
    Bauernfeind, A., Y. Chong, and S. Schweighart. 1989. Extended broad spectrum β-lactamase in Klebsiella pneumoniae including resistance to cephamycins. Infection17:316-321.
    OpenUrlCrossRefPubMedWeb of Science
  6. 6.↵
    Bauernfeind, A., H. Grimm, and S. Schweighart. 1990. A new plasmidic cefotaximase in a clinical isolate of Escherichia coli. Infection18:294-298.
    OpenUrlCrossRefPubMedWeb of Science
  7. 7.
    Bauernfeind, A., I. Schneider, R. Jungwirth, H. Sahly, and U. Ullmann. 1999. A novel type of AmpC β-lactamase, ACC-1, produced by a Klebsiella pneumoniae strain causing nosocomial pneumonia. Antimicrob. Agents Chemother.43:1924-1931.
    OpenUrlAbstract/FREE Full Text
  8. 8.
    Bauernfeind, A., I. Stemplinger, R. Jungwirth, S. Ernst, and J. M. Casellas. 1996. Sequences of β-lactamase genes encoding CTX-M-1 (MEN-1) and CTX-M-2 and relationship of their amino acid sequences with those of other β-lactamases. Antimicrob. Agents Chemother.40:509-513.
    OpenUrlAbstract/FREE Full Text
  9. 9.
    Baxter, I. A., and P. A. Lambert. 1994. Isolation and partial purification of a carbapenem-hydrolysing metallo-beta-lactamase from Pseudomonas cepacia. FEMS Microbiol. Lett.122:251-256.
    OpenUrlCrossRefPubMed
  10. 10.
    Beauchef-Havard, A., G. Arlet, V. Gautier, R. Labia, P. Grimont, and A. Philippon. 2003. Molecular and biochemical characterization of a novel class A β-lactamase (HER-1) from Escherichia hermannii. Antimicrob. Agents Chemother.47:2669-2673.
    OpenUrlAbstract/FREE Full Text
  11. 11.
    Bellais, S., D. Aubert, T. Naas, and P. Nordmann. 2000. Molecular and biochemical heterogeneity of class B carbapenem-hydrolyzing β-lactamases in Chryseobacterium meningosepticum. Antimicrob. Agents Chemother.44:1878-1886.
    OpenUrlAbstract/FREE Full Text
  12. 12.
    Bellais, S., D. Girlich, A. Karim, and P. Nordmann. 2002. EBR-1, a novel Ambler subclass B1 β-lactamase from Empedobacter brevis. Antimicrob. Agents Chemother.46:3223-3227.
    OpenUrlAbstract/FREE Full Text
  13. 13.
    Bellais, S., S. Leotard, L. Poirel, T. Naas, and P. Nordmann. 1999. Molecular characterization of a carbapenem-hydrolyzing β-lactamase from Chryseobacterium (Flavobacterium) indologenes. FEMS Microbiol. Lett.171:127-132.
    OpenUrlPubMedWeb of Science
  14. 14.
    Bellais, S., T. Naas, and P. Nordmann. 2002. Genetic and biochemical characterization of CGB-1, an Ambler class B carbapenem-hydrolyzing β-lactamase from Chryseobacterium gleum. Antimicrob. Agents Chemother.46:2791-2796.
    OpenUrlAbstract/FREE Full Text
  15. 15.
    Bellais, S., T. Naas, and P. Nordmann. 2002. Molecular and biochemical characterization of Ambler class A extended-spectrum β-lactamase CGA-1 from Chryseobacterium gleum. Antimicrob. Agents Chemother.46:966-970.
    OpenUrlAbstract/FREE Full Text
  16. 16.
    Bellais, S., L. Poirel, N. Fortineau, J. W. Decousser, and P. Nordmann. 2001. Biochemical-genetic characterization of the chromosomally encoded extended-spectrum class A β-lactamase from Rahnella aquatilis. Antimicrob. Agents Chemother.45:2965-2968.
    OpenUrlAbstract/FREE Full Text
  17. 17.
    Bellais, S., L. Poirel, T. Naas, D. Girlich, and P. Nordmann. 2000. Genetic-biochemical analysis and distribution of the Ambler class A β-lactamase CME-2, responsible for extended-spectrum cephalosporin resistance in Chryseobacterium (Flavobacterium) meningosepticum. Antimicrob. Agents Chemother.44:1-9.
    OpenUrlAbstract/FREE Full Text
  18. 18.↵
    Bernard, H., C. Tancrede, V. Livrelli, M. Barthelemy, and R. Labia. 1992. A novel plasmid-mediated extended-spectrum β-lactamase not derived from TEM- or SHV-type enzymes. J. Antimicrob. Chemother.29:590-592.
    OpenUrlCrossRefPubMedWeb of Science
  19. 19.
    Billot-Klein, D., L. Gutmann, and E. Collatz. 1990. Nucleotide sequence of the SHV-5 β-lactamase gene of a Klebsiella pneumoniae plasmid. Antimicrob. Agents Chemother.34:2439-2441.
    OpenUrlAbstract/FREE Full Text
  20. 20.
    Blazquez, J., M. R. Baquero, R. Canton, I. Alos, and F. Baquero. 1993. Characterization of a new TEM-type β-lactamase resistant to clavulanate, sulbactam, and tazobactam in a clinical isolate of Escherichia coli. Antimicrob. Agents Chemother.37:2059-2063.
    OpenUrlAbstract/FREE Full Text
  21. 21.
    Bonnet, R., J. L. Sampaio, C. Chanal, D. Sirot, C. De Champs, J. L. Viallard, R. Labia, and J. Sirot. 2000. A novel class A extended-spectrum β-lactamase (BES-1) in Serratia marcescens isolated in Brazil. Antimicrob. Agents Chemother.44:3061-3068.
    OpenUrlAbstract/FREE Full Text
  22. 22.
    Boschi, L., P. S. Mercuri, M. L. Riccio, G. Amicosante, M. Galleni, J. M. Frère, and G. M. Rossolini. 2000. The Legionella (Fluoribacter) gormanii metallo-β-lactamase: a new member of the highly divergent lineage of molecular-subclass B3 β-lactamases. Antimicrob. Agents Chemother.44:1538-1543.
    OpenUrlAbstract/FREE Full Text
  23. 23.
    Bradford, P. A., C. Urban, N. Mariano, S. J. Projan, J. J. Rahal, and K. Bush. 1997. Imipenem resistance in Klebsiella pneumoniae is associated with the combination of ACT-1, a plasmid-mediated AmpC β-lactamase, and the loss of an outer membrane protein. Antimicrob. Agents Chemother.41:563-569.
    OpenUrlAbstract/FREE Full Text
  24. 24.
    Castanheira, M., M. A. Toleman, R. N. Jones, F. J. Schmidt, and T. R. Walsh. 2004. Molecular characterization of a β-lactamase gene, blaGIM-1, encoding a new subclass of metallo-β-lactamase. Antimicrob. Agents Chemother.48:4654-4661.
    OpenUrlAbstract/FREE Full Text
  25. 25.
    Chanal, C., M. C. Poupart, D. Sirot, R. Labia, J. Sirot, and R. Cluzel. 1992. Nucleotide sequences of CAZ-2, CAZ-6, and CAZ-7 β-lactamase genes. Antimicrob. Agents Chemother.36:1817-1820.
    OpenUrlAbstract/FREE Full Text
  26. 26.
    Chanal, C., D. Sirot, H. Malaure, M. C. Poupart, and J. Sirot. 1994. Sequences of CAZ-3 and CTX-2 extended-spectrum β-lactamase genes. Antimicrob. Agents Chemother.38:2452-2453.
    OpenUrlAbstract/FREE Full Text
  27. 27.
    Chen, Y., J. Succi, F. C. Tenover, and T. M. Koehler. 2003. β-Lactamase genes of the penicillin-susceptible Bacillus anthracis Sterne strain. J. Bacteriol.185:823-830.
    OpenUrlAbstract/FREE Full Text
  28. 28.
    Cheung, T. K., P. L. Ho, P. C. Woo, K. Y. Yuen, and P. Y. Chau. 2002. Cloning and expression of class A β-lactamase gene blaABPS in Burkholderia pseudomallei. Antimicrob. Agents Chemother.46:1132-1135.
    OpenUrlAbstract/FREE Full Text
  29. 29.
    Choury, D., M. F. Szajnert, M. L. Joly-Guillou, K. Azibi, M. Delpech, and G. Paul. 2000. Nucleotide sequence of the blaRTG-2 (CARB-5) gene and phylogeny of a new group of carbenicillinases. Antimicrob. Agents Chemother.44:1070-1074.
    OpenUrlAbstract/FREE Full Text
  30. 30.
    Colombo, M. L., S. Hanique, S. L. Baurin, C. Bauvois, K. De Vriendt, J. J. Van Beeumen, J. M. Frère, and B. Joris. 2004. The ybxI gene of Bacillus subtilis 168 encodes a class D β-lactamase of low activity. Antimicrob. Agents Chemother.48:484-490.
    OpenUrlAbstract/FREE Full Text
  31. 31.
    Datta, N., and P. Kontomichalou. 1965. Penicillinase synthesis controlled by infectious R factors in Enterobacteriaceae. Nature (London)208:239-241.
    OpenUrlCrossRefPubMedWeb of Science
  32. 32.
    Datz, M., B. Joris, E. A. Azab, M. Galleni, J. Van Beeumen, J. M. Frère, and H. H. Martin. 1994. A common system controls the induction of very different genes. The class-A β-lactamase of Proteus vulgaris and the enterobacterial class-C β-lactamase. Eur. J. Biochem.226:149-157.
    OpenUrlPubMed
  33. 33.
    Decousser, J. W., L. Poirel, and P. Nordmann. 2001. Characterization of a chromosomally encoded extended-spectrum class A β-lactamase from Kluyvera cryocrescens. Antimicrob. Agents Chemother.45:3595-3598.
    OpenUrlAbstract/FREE Full Text
  34. 34.
    Deschaseaux, M. L., M. Jouvenot, G. L. Adessi, and Y. Michel-Briand. 1988. Two presumed novel β-lactamases in members of the family Enterobacteriaceae. J. Antimicrob. Chemother.21:133-135.
    OpenUrlPubMed
  35. 35.
    Docquier, J. D., F. Pantanella, F. Giuliani, M. C. Thaller, G. Amicosante, M. Galleni, J. M. Frère, K. Bush, and G. M. Rossolini. 2002. CAU-1, a subclass B3 metallo-β-lactamase of low substrate affinity encoded by an ortholog present in the Caulobacter crescentus chromosome. Antimicrob. Agents Chemother.46:1823-1830.
    OpenUrlAbstract/FREE Full Text
  36. 36.
    Donald, H. M., W. Scaife, S. G. Amyes, and H. K. Young. 2000. Sequence analysis of ARI-1, a novel OXA β-lactamase, responsible for imipenem resistance in Acinetobacter baumannii 6B92. Antimicrob. Agents Chemother.44:196-199.
    OpenUrlAbstract/FREE Full Text
  37. 37.
    Eliasson, I., and C. Kamme. 1985. Characterization of the plasmid-mediated β-lactamase in Branhamella catarrhalis, with special reference to substrate affinity. J. Antimicrob. Chemother.15:139-149.
    OpenUrlCrossRefPubMed
  38. 38.↵
    Fevre, C., M. Jbel, V. Passet, F. X. Weill, P. A. Grimont, and S. Brisse. 2005. Six groups of the OXY β-lactamase evolved over millions of years in Klebsiella oxytoca. Antimicrob. Agents Chemother.49:3453-3462.
    OpenUrlAbstract/FREE Full Text
  39. 39.
    Fihman, V., M. Rottman, Y. Benzerara, F. Delisle, R. Labia, A. Philippon, and G. Arlet. 2002. BUT-1: a new member in the chromosomal inducible class C β-lactamases family from a clinical isolate of Buttiauxella sp. FEMS Microbiol. Lett.213:103-111.
    OpenUrlPubMed
  40. 40.
    Flemming, P. C., M. Goldner, and D. G. Glass. 1963. Observations on the nature, distribution, and significance of cephalosporinase. Lanceti:1399-1401.
    OpenUrlPubMedWeb of Science
  41. 41.
    Fosse, T., C. Giraud-Morin, I. Madinier, and R. Labia. 2003. Sequence analysis and biochemical characterisation of chromosomal CAV-1 (Aeromonas caviae), the parental cephalosporinase of plasmid-mediated AmpC ‘FOX’ cluster. FEMS Microbiol. Lett.222:93-98.
    OpenUrlCrossRefPubMed
  42. 42.
    Fournier, B., P. H. Roy, P. H. Lagrange, and A. Philippon. 1996. Chromosomal β-lactamase genes of Klebsiella oxytoca are divided into two main groups, blaOXY-1 and blaOXY-2. Antimicrob. Agents Chemother.40:454-459.
    OpenUrlAbstract/FREE Full Text
  43. 43.
    Gaillot, O., C. Clement, M. Simonet, and A. Philippon. 1997. Novel transferable β-lactam resistance with cephalosporinase characteristics in Salmonella enteritidis. J. Antimicrob. Chemother.39:85-87.
    OpenUrlCrossRefPubMedWeb of Science
  44. 44.
    Galan, J. C., M. Reig, A. Navas, F. Baquero, and J. Blazquez. 2000. ACI-1 from Acidaminococcus fermentans: characterization of the first β-lactamase in anaerobic cocci. Antimicrob. Agents Chemother.44:3144-3149.
    OpenUrlAbstract/FREE Full Text
  45. 45.
    Giakkoupi, P., L. S. Tzouvelekis, A. Tsakris, V. Loukova, D. Sofianou, and E. Tzelepi. 2000. IBC-1, a novel integron-associated class A β-lactamase with extended-spectrum properties produced by an Enterobacter cloacae clinical strain. Antimicrob. Agents Chemother.44:2247-2253.
    OpenUrlAbstract/FREE Full Text
  46. 46.
    Gonzalez Leiza, M., J. C. Perez-Diaz, J. Ayala, J. M. Casellas, J. Martinez-Beltran, K. Bush, and F. Baquero. 1994. Gene sequence and biochemical characterization of FOX-1 from Klebsiella pneumoniae, a new AmpC-type plasmid-mediated β-lactamase with two molecular variants. Antimicrob. Agents Chemother.38:2150-2157.
    OpenUrlAbstract/FREE Full Text
  47. 47.
    Granier, S. A., V. Leflon-Guibout, M. H. Nicolas-Chanoine, K. Bush, and F. W. Goldstein. 2002. The extended-spectrum K1 β-lactamase from Klebsiella oxytoca SC 10,436 is a member of the bla(OXY-2) family of chromosomal Klebsiella enzymes. Antimicrob. Agents Chemother.46:2056-2057.
    OpenUrlFREE Full Text
  48. 48.
    Hæggman, S., S. Löfdahl, A. Paauw, J. Verhoef, and S. Brisse. 2004. Diversity and evolution of the class A chromosomal β-lactamase gene in Klebsiella pneumoniae. Antimicrob. Agents Chemother.48:2400-2408.
    OpenUrlAbstract/FREE Full Text
  49. 49.
    Hall, L. M. C., D. M. Livermore, D. Gur, M. Akova, and H. E. Akalin. 1993. OXA-11, an extended-spectrum variant of OXA-10(PSE-2) β-lactamase from Pseudomonas aeruginosa. Antimicrob. Agents Chemother.37:1637-1644.
    OpenUrlAbstract/FREE Full Text
  50. 50.
    Hayes, M. V., C. J. Thomson, and S. G. Amyes. 1994. Three beta-lactamases isolated from Aeromonas salmonicida, including a carbapenemase not detectable by conventional methods. Eur. J. Clin. Microbiol. Infect. Dis.13:805-811.
    OpenUrlCrossRefPubMed
  51. 51.
    Hedges, R. W., N. Datta, P. Kontomichalou, and J. T. Smith. 1974. Molecular specificities of R factor-determined beta-lactamases: correlation with plasmid compatibility. J. Bacteriol.117:56-62.
    OpenUrlAbstract/FREE Full Text
  52. 52.
    Hedges, R. W., and M. Matthew. 1979. Acquisition by Escherichia coli of plasmid-borne β-lactamases normally confined to Pseudomonas spp. Plasmid2:269-278.
    OpenUrlCrossRefPubMedWeb of Science
  53. 53.
    Hedges, R. W., A. A. Medeiros, M. Cohenford, and G. A. Jacoby. 1985. Genetic and biochemical properties of AER-1, a novel carbenicillin-hydrolyzing β-lactamase from Aeromonas hydrophila. Antimicrob. Agents Chemother.27:479-484.
    OpenUrlAbstract/FREE Full Text
  54. 54.
    Henriques, I., A. Moura, A. Alves, M. J. Saavedra, and A. Correia. 2004. Molecular characterization of a carbapenem-hydrolyzing class A β-lactamase, SFC-1, from Serratia fonticola UTAD54. Antimicrob. Agents Chemother.48:2321-2324.
    OpenUrlAbstract/FREE Full Text
  55. 55.
    Horii, T., Y. Arakawa, M. Ohta, S. Ichiyama, R. Wacharotayankun, and N. Kato. 1993. Plasmid-mediated AmpC-type β-lactamase isolated from Klebsiella pneumoniae confers resistance to broad-spectrum β-lactams, including moxalactam. Antimicrob. Agents Chemother.37:984-990.
    OpenUrlAbstract/FREE Full Text
  56. 56.
    Hujer, K. M., N. S. Hamza, A. M. Hujer, F. Perez, M. S. Helfand, C. R. Bethel, J. M. Thomson, V. E. Anderson, M. Barlow, L. B. Rice, F. C. Tenover, and R. A. Bonomo. 2005. Identification of a new allelic variant of the Acinetobacter baumannii cephalosporinase, ADC-7 β-lactamase: defining a unique family of class C enzymes. Antimicrob. Agents Chemother.49:2941-2948.
    OpenUrlAbstract/FREE Full Text
  57. 57.
    Humeniuk, C., G. Arlet, V. Gautier, P. Grimont, R. Labia, and A. Philippon. 2002. Beta-lactamases of Kluyvera ascorbata, probable progenitors of some plasmid-encoded CTX-M types. Antimicrob. Agents Chemother.46:3045-3049.
    OpenUrlAbstract/FREE Full Text
  58. 58.
    Ishii, Y., A. Ohno, H. Taguchi, S. Imajo, M. Ishiguro, and H. Matsuzawa. 1995. Cloning and sequencing of the gene encoding a cefotaxime-hydrolyzing class A β-lactamase isolated from Escherichia coli. Antimicrob. Agents Chemother.39:2269-2275.
    OpenUrlAbstract/FREE Full Text
  59. 59.
    Iyobe, S., M. Tsunoda, and S. Mitsuhashi. 1994. Cloning and expression in Enterobacteriaceae of the extended-spectrum β-lactamase gene from a Pseudomonas aeruginosa plasmid. FEMS Microbiol. Lett.121:175-180.
    OpenUrlPubMed
  60. 60.
    Jack, G. W., and M. H. Richmond. 1970. A comparative study of eight distinct β-lactamases synthesized by gram-negative bacteria. J. Gen. Microbiol.61:43-61.
    OpenUrlCrossRefPubMed
  61. 61.
    Jacoby, G. A., and L. Sutton. 1991. Properties of plasmids responsible for extended-spectrum β-lactamase production. Antimicrob. Agents Chemother.35:164-169.
    OpenUrlAbstract/FREE Full Text
  62. 62.
    Jones, M. E., and P. M. Bennett. 1995. Inducible expression of the chromosomal cdiA from Citrobacter diversus NF85, encoding an ambler class A β-lactamase, is under similar genetic control to the chromosomal ampC, encoding an Ambler class C enzyme, from Citrobacter freundii OS60. Microb. Drug Resist.1:285-291.
    OpenUrlCrossRefPubMed
  63. 63.
    Kong, K. F., S. R. Jayawardena, A. Del Puerto, L. Wiehlmann, U. Laabs, B. Tümmler, and K. Mathee. 2005. Characterization of poxB, a chromosomal-encoded Pseudomonas aeruginosa oxacillinase. Gene358:82-92.
    OpenUrlCrossRefPubMedWeb of Science
  64. 64.
    Kunugita, C., F. Higashitani, A. Hyodo, N. Unemi, and M. Inoue. 1995. Characterization of a new plasmid-mediated extended-spectrum β-lactamase from Serratia marcescens. J. Antibiotics48:1453-1459.
    OpenUrlPubMed
  65. 65.
    Kuwabara, S., and E. P. Abraham. 1969. Some properties of two cell-bound β-lactamases from Bacillus cereus 569/H. Biochem. J.115:859-861.
    OpenUrlFREE Full Text
  66. 66.
    Labia, R., M. Guionie, M. Barthélémy, and A. Philippon. 1981. Properties of three carbenicillin-hydrolyzing β-lactamases (CARB) from Pseudomonas aeruginosa: identification of a new enzyme. J. Antimicrob. Chemother.7:49-56.
    OpenUrlCrossRefPubMedWeb of Science
  67. 67.
    Lartigue, M. F., L. Poirel, N. Fortineau, and P. Nordmann. 2005. Chromosome-borne class A BOR-1 β-lactamase of Bordetella bronchiseptica and Bordetella parapertussis. Antimicrob. Agents Chemother.49:2565-2567.
    OpenUrlAbstract/FREE Full Text
  68. 68.
    Lau, S. K., P. L. Ho, M. W. Li, H. W. Tsoi, R. W. Yung, P. C. Woo, and K. Y. Yuen. 2005. Cloning and characterization of a chromosomal class C β-lactamase and its regulatory gene in Laribacter hongkongensis. Antimicrob. Agents Chemother.49:1957-1964.
    OpenUrlAbstract/FREE Full Text
  69. 69.
    Laurent, F., L. Poirel, T. Naas, E. B. Chaibi, R. Labia, P. Boiron, and P. Nordmann. 1999. Biochemical-genetic analysis and distribution of FAR-1, a class A β-lactamase from Nocardia farcinica. Antimicrob. Agents Chemother.43:1644-1650.
    OpenUrlAbstract/FREE Full Text
  70. 70.
    Lauretti, L., M. L. Riccio, A. Mazzariol, G. Cornaglia, G. Amicosante, R. Fontana, and G. M. Rossolini. 1999. Cloning and characterization of blaVIM, a new integron-borne metallo-β-lactamase gene from a Pseudomonas aeruginosa clinical isolate. Antimicrob. Agents Chemother.43:1584-1590.
    OpenUrlAbstract/FREE Full Text
  71. 71.
    Lee, K., J. H. Yum, D. Yong, H. M. Lee, H. D. Kim, J. D. Docquier, G. M. Rossolini, and Y. Chong. 2005. Novel acquired metallo-β-lactamase gene, blaSIM-1, in a class 1 integron from Acinetobacter baumannii clinical isolates from Korea. Antimicrob. Agents Chemother.49:4485-4491.
    OpenUrlAbstract/FREE Full Text
  72. 72.
    Lee, S. H., S. H. Jeong, J.-I. Wachino, Y. Arakawa, L. Poirel, and P. Nordmann. 2005. Nomenclature of GES-type extended-spectrum β-lactamases. Antimicrob. Agents Chemother.49:2148-2150.
    OpenUrlFREE Full Text
  73. 73.
    Levesque, R. C., R. Letarte, and J. C. Pechère. 1983. Comparative study of the beta-lactamase activity found in Achromobacter. Can. J. Microbiol.29:819-826.
    OpenUrlCrossRefPubMed
  74. 74.
    Liassine, N., S. Madec, B. Ninet, C. Metral, M. Fouchereau-Peron, R. Labia, and R. Auckenthaler. 2002. Postneurosurgical meningitis due to Proteus penneri with selection of a ceftriaxone-resistant isolate: analysis of chromosomal class A β-lactamase HugA and its LysR-type regulatory protein HugR. Antimicrob. Agents Chemother.46:216-219.
    OpenUrlAbstract/FREE Full Text
  75. 75.
    Livermore, D. M., and C. S. Jones. 1986. Characterization of NPS-1, a novel plasmid-mediated β-lactamase, from two Pseudomonas aeruginosa isolates. Antimicrob. Agents Chemother.29:99-103.
    OpenUrlAbstract/FREE Full Text
  76. 76.↵
    Livermore, D. M., J. P. Maskell, and J. D. Williams. 1984. Detection of PSE-2 β-lactamase in enterobacteria. Antimicrob. Agents Chemother.25:268-272.
    OpenUrlAbstract/FREE Full Text
  77. 77.
    Mammeri, H., S. Bellais, and P. Nordmann. 2002. Chromosome-encoded β-lactamases TUS-1 and MUS-1 from Myroides odoratus and Myroides odoratimimus (formerly Flavobacterium odoratum), new members of the lineage of molecular subclass B1 metalloenzymes. Antimicrob. Agents Chemother.46:3561-3567.
    OpenUrlAbstract/FREE Full Text
  78. 78.
    Mammeri, H., L. Poirel, N. Mangeney, and P. Nordmann. 2003. Chromosomal integration of a cephalosporinase gene from Acinetobacter baumannii into Oligella urethralis as a source of acquired resistance to β-lactams. Antimicrob. Agents Chemother.47:1536-1542.
    OpenUrlAbstract/FREE Full Text
  79. 79.
    Massidda, O., G. M. Rossolini, and G. Satta. 1991. The Aeromonas hydrophila cphA gene: molecular heterogeneity among class B metallo-beta-lactamases. J. Bacteriol.173:4611-4617.
    OpenUrlAbstract/FREE Full Text
  80. 80.
    Matsumoto, Y., F. Ikeda, T. Kamimura, Y. Yokota, and Y. Mine. 1988. Novel plasmid-mediated β-lactamase from Escherichia coli that inactivates oxyimino-cephalosporins. Antimicrob. Agents Chemother.32:1243-1246.
    OpenUrlAbstract/FREE Full Text
  81. 81.
    Matsumoto, Y., and M. Inoue. 1999. Characterization of SFO-1, a plasmid-mediated inducible class A β-lactamase from Enterobacter cloacae. Antimicrob. Agents Chemother.43:307-313.
    OpenUrlAbstract/FREE Full Text
  82. 82.
    Matsumura, N., S. Minami, and S. Mitsuhashi. 1998. Sequences of homologous β-lactamases from clinical isolates of Serratia marcescens with different substrate specificities. Antimicrob. Agents Chemother.42:176-179.
    OpenUrlAbstract/FREE Full Text
  83. 83.
    Matsumura, N., and S. Mitsuhashi. 1995. A β-lactamase from Serratia marcescens hydrolyzing the 2-carboxypenam T-5575. Antimicrob. Agents Chemother.39:2132-2134.
    OpenUrlAbstract/FREE Full Text
  84. 84.↵
    Matthew, M., A. M. Harris, M. J. Marshall, and G. W. Ross. 1975. The use of analytical isoelectric focusing for detection and identification of β-lactamases. J. Gen. Microbiol.88:169-178.
    OpenUrlPubMed
  85. 85.
    Matthew, M., and R. W. Hedges. 1976. Analytical isoelectric focusing of R factor determined β-lactamases: correlation with plasmid compatibility. J. Bacteriol.125:713-718.
    OpenUrlAbstract/FREE Full Text
  86. 86.
    Matthew, M., R. W. Hedges, and J. T. Smith. 1979. Types of β-lactamase determined by plasmids in gram-negative bacteria. J. Bacteriol.138:657-662.
    OpenUrlAbstract/FREE Full Text
  87. 87.
    Medeiros, A. A., M. Cohenford, and G. A. Jacoby. 1985. Five novel plasmid-determined β-lactamases. Antimicrob. Agents Chemother.27:715-719.
    OpenUrlAbstract/FREE Full Text
  88. 88.↵
    Medeiros, A. A., R. W. Hedges, and G. A. Jacoby. 1982. Spread of a “Pseudomonas-specific” β-lactamase to plasmids of enterobacteria. J. Bacteriol.149:700-707.
    OpenUrlAbstract/FREE Full Text
  89. 89.
    Morin, A. S., L. Poirel, F. Mory, R. Labia, and P. Nordmann. 2002. Biochemical-genetic analysis and distribution of DES-1, an Ambler class A extended-spectrum β-lactamase from Desulfovibrio desulfuricans. Antimicrob. Agents Chemother.46:3215-3222.
    OpenUrlAbstract/FREE Full Text
  90. 90.
    Naas, T., S. Bellais, and P. Nordmann. 2003. Molecular and biochemical characterization of a carbapenem-hydrolysing β-lactamase from Flavobacterium johnsoniae. J. Antimicrob. Chemother.51:267-273.
    OpenUrlCrossRefPubMedWeb of Science
  91. 91.↵
    Naas, T., and P. Nordmann. 1994. Analysis of a carbapenem-hydrolyzing class A β-lactamase from Enterobacter cloacae and of its LysR-type regulatory protein. Proc. Natl. Acad. Sci. USA91:7693-7697.
    OpenUrlAbstract/FREE Full Text
  92. 92.
    Naas, T., L. Vandel, W. Sougakoff, D. M. Livermore, and P. Nordmann. 1994. Cloning and sequence analysis of the gene for a carbapenem-hydrolyzing class A β-lactamase, Sme-1, from Serratia marcescens S6. Antimicrob. Agents Chemother.38:1262-1270.
    OpenUrlAbstract/FREE Full Text
  93. 93.
    Nadjar, D., R. Labia, C. Cerceau, C. Bizet, A. Philippon, and G. Arlet. 2001. Molecular characterization of chromosomal class C β-lactamase and its regulatory gene in Ochrobactrum anthropi. Antimicrob. Agents Chemother.45:2324-2330.
    OpenUrlAbstract/FREE Full Text
  94. 94.
    Nakano, R., R. Okamoto, Y. Nakano, K. Kaneko, N. Okitsu, Y. Hosaka, and M. Inoue. 2004. CFE-1, a novel plasmid-encoded AmpC β-lactamase with an ampR gene originating from Citrobacter freundii. Antimicrob. Agents Chemother.48:1151-1158.
    OpenUrlAbstract/FREE Full Text
  95. 95.
    Nordmann, P., E. Ronco, T. Naas, C. Duport, Y. Michel-Briand, and R. Labia. 1993. Characterization of a novel extended-spectrum β-lactamase from Pseudomonas aeruginosa. Antimicrob. Agents Chemother.37:962-969.
    OpenUrlAbstract/FREE Full Text
  96. 96.
    O'Hara, K., S. Haruta, T. Sawai, M. Tsunoda, and S. Iyobe. 1998. Novel metallo β-lactamase mediated by a Shigella flexneri plasmid. FEMS Microbiol. Lett.162:201-206.
    OpenUrlPubMedWeb of Science
  97. 97.
    Ohsuka, S., Y. Arakawa, T. Horii, H. Ito, and M. Ohta. 1995. Effect of pH on activities of novel β-lactamases and β-lactamase inhibitors against these β-lactamases. Antimicrob. Agents Chemother.39:1856-1858.
    OpenUrlAbstract/FREE Full Text
  98. 98.
    Osano, E., Y. Arakawa, R. Wacharotayankun, M. Ohta, T. Horii, H. Ito, F. Yoshimura, and N. Kato. 1994. Molecular characterization of an enterobacterial metallo-β-lactamase found in a clinical isolate of Serratia marcescens that shows imipenem resistance. Antimicrob. Agents Chemother.38:71-78.
    OpenUrlAbstract/FREE Full Text
  99. 99.
    Papanicolaou, G. A., A. A. Medeiros, and G. A. Jacoby. 1990. Novel plasmid-mediated β-lactamase (MIR-1) conferring resistance to oxyimino- and alpha-methoxy β-lactams in clinical isolates of Klebsiella pneumoniae. Antimicrob. Agents Chemother.34:2200-2209.
    OpenUrlAbstract/FREE Full Text
  100. 100.
    Parker, A. C., and C. J. Smith. 1993. Genetic and biochemical analysis of a novel Ambler class A β-lactamase responsible for cefoxitin resistance in Bacteroides species. Antimicrob. Agents Chemother.37:1028-1036.
    OpenUrlAbstract/FREE Full Text
  101. 101.
    Paton, R., R. Miles, J. Hood, and A. SGB. 1993. ARI 1: β-lactamase-mediated imipenem resistance in Acinetobacter baumannii. Int. J. Antimicrob. Agents2:81-88.
    OpenUrlPubMed
  102. 102.
    Payne, D. J., J. Hood, M. S. Marriott, and S. G. B. Amyes. 1990. Separation of plasmid-mediated extended spectrum β-lactamases by fast protein liquid chromotography (FPLC system). FEMS Microbiol. Lett.69:195-200.
    OpenUrlCrossRefWeb of Science
  103. 103.
    Payne, D. J., M. S. Marriott, and S. G. B. Amyes. 1989. TEM-E1: a novel β-lactamase conferring resistance to ceftazidime. FEMS Microbiol. Lett.59:97-100.
    OpenUrlCrossRefWeb of Science
  104. 104.
    Péduzzi, J., M. Barthélémy, K. Tiwari, D. Mattioni, and R. Labia. 1989. Structural features related to hydrolytic activity against ceftazidime of plasmid-mediated SHV-type CAZ-5 β-lactamase. Antimicrob. Agents Chemother.33:2160-2163.
    OpenUrlAbstract/FREE Full Text
  105. 105.
    Perilli, M., A. Felici, N. Franceschini, A. De Santis, L. Pagani, F. Luzzaro, A. Oratore, G. M. Rossolini, J. R. Knox, and G. Amicosante. 1997. Characterization of a new TEM-derived β-lactamase produced in a Serratia marcescens strain. Antimicrob. Agents Chemother.41:2374-2382.
    OpenUrlAbstract/FREE Full Text
  106. 106.
    Petit, A., D. L. Sirot, C. M. Chanal, J. L. Sirot, R. Labia, G. Gerbaud, and R. A. Cluzel. 1988. Novel plasmid-mediated β-lactamase in clinical isolates of Klebsiella pneumoniae more resistant to ceftazidime than to other broad-spectrum cephalosporins. Antimicrob. Agents Chemother.32:626-630.
    OpenUrlAbstract/FREE Full Text
  107. 107.
    Petrella, S., D. Clermont, I. Casin, V. Jarlier, and W. Sougakoff. 2001. Novel class A β-lactamase Sed-1 from Citrobacter sedlakii: genetic diversity of β-lactamases within the Citrobacter genus. Antimicrob. Agents Chemother.45:2287-2298.
    OpenUrlAbstract/FREE Full Text
  108. 108.
    Philippon, A., R. Labia, and G. Jacoby. 1989. Extended-spectrum β-lactamases. Antimicrob. Agents Chemother.33:1131-1136.
    OpenUrlFREE Full Text
  109. 109.
    Philippon, A., G. Paul, M. Barthelemy, R. Labia, and P. Nevot. 1980. Properties of the beta-lactamase (penicillinase) produced by Levinea malonatica. FEMS Microbiol. Lett.8:191-194.
    OpenUrlCrossRef
  110. 110.
    Pitton, J. S. 1972. Mechanism of the bacterial resistance to antibiotics, p. 15-93. In R. H. E. A. Adrian (ed.), Reviews of physiology. Springer-Verlag, Berlin, Germany.
  111. 111.
    Poirel, L., L. Brinas, A. Verlinde, L. Ide, and P. Nordmann. 2005. BEL-1, a novel clavulanic acid-inhibited extended-spectrum β-lactamase, and the class 1 integron In120 in Pseudomonas aeruginosa. Antimicrob. Agents Chemother.49:3743-3748.
    OpenUrlAbstract/FREE Full Text
  112. 112.↵
    Poirel, L., M. Gniadkowski, and P. Nordmann. 2002. Biochemical analysis of the ceftazidime-hydrolysing extended-spectrum β-lactamase CTX-M-15 and of its structurally related β-lactamase CTX-M-3. J. Antimicrob. Chemother.50:1031-1034.
    OpenUrlCrossRefPubMedWeb of Science
  113. 113.
    Poirel, L., C. Heritier, and P. Nordmann. 2005. Genetic and biochemical characterization of the chromosome-encoded class B β-lactamases from Shewanella livingstonensis (SLB-1) and Shewanella frigidimarina (SFB-1). J. Antimicrob. Chemother.55:680-685.
    OpenUrlCrossRefPubMed
  114. 114.
    Poirel, L., P. Kampfer, and P. Nordmann. 2002. Chromosome-encoded Ambler class A β-lactamase of Kluyvera georgiana, a probable progenitor of a subgroup of CTX-M extended-spectrum β-lactamases. Antimicrob. Agents Chemother.46:4038-4040.
    OpenUrlAbstract/FREE Full Text
  115. 115.
    Poirel, L., F. Laurent, T. Naas, R. Labia, P. Boiron, and P. Nordmann. 2001. Molecular and biochemical analysis of AST-1, a class A β-lactamase from Nocardia asteroides sensu stricto. Antimicrob. Agents Chemother.45:878-882.
    OpenUrlAbstract/FREE Full Text
  116. 116.
    Poirel, L., I. Le Thomas, T. Naas, A. Karim, and P. Nordmann. 2000. Biochemical sequence analyses of GES-1, a novel class A extended-spectrum β-lactamase, and the class 1 integron In52 from Klebsiella pneumoniae. Antimicrob. Agents Chemother.44:622-632.
    OpenUrlAbstract/FREE Full Text
  117. 117.
    Poirel, L., T. Naas, M. Guibert, E. B. Chaibi, R. Labia, and P. Nordmann. 1999. Molecular and biochemical characterization of VEB-1, a novel class A extended-spectrum β-lactamase encoded by an Escherichia coli integron gene. Antimicrob. Agents Chemother.43:573-581.
    OpenUrlAbstract/FREE Full Text
  118. 118.
    Rasmussen, B. A., K. Bush, D. Keeney, Y. Yang, R. Hare, C. O'Gara, and A. A. Medeiros. 1996. Characterization of IMI-1 β-lactamase, a class A carbapenem-hydrolyzing enzyme from Enterobacter cloacae. Antimicrob. Agents Chemother.40:2080-2086.
    OpenUrlAbstract/FREE Full Text
  119. 119.
    Rasmussen, B. A., Y. Gluzman, and F. P. Tally. 1990. Cloning and sequencing of the class B β-lactamase gene (ccrA) from Bacteroides fragilis TAL3636. Antimicrob. Agents Chemother.34:1590-1592.
    OpenUrlAbstract/FREE Full Text
  120. 120.
    Rasmussen, B. A., D. Keeney, Y. Yang, and K. Bush. 1994. Cloning and expression of a cloxacillin-hydrolyzing enzyme and a cephalosporinase from Aeromonas sobria AER 14M in Escherichia coli: requirement for an E. coli chromosomal mutation for efficient expression of the class D enzyme. Antimicrob. Agents Chemother.38:2078-2085.
    OpenUrlAbstract/FREE Full Text
  121. 121.
    Rasmussen, B. A., Y. Yang, N. Jacobus, and K. Bush. 1994. Contribution of enzymatic properties, cell permeability, and enzyme expression to microbiological activities of β-lactams in three Bacteroides fragilis isolates that harbor a metallo-β-lactamase gene. Antimicrob. Agents Chemother.38:2116-2120.
    OpenUrlAbstract/FREE Full Text
  122. 122.
    Reid, A. J., and S. G. B. Amyes. 1986. Plasmid penicillin resistance in Vibrio cholerae: identification of the new β-lactamase SAR-1. Antimicrob. Agents Chemother.30:245-247.
    OpenUrlAbstract/FREE Full Text
  123. 123.↵
    Reid, A. J., I. N. Simpson, P. B. Harper, and S. G. B. Amyes. 1988. The differential expression of genes for the PSE-4 β-lactamase in Pseudomonas aeruginosa and the Enterobacteriaceae. J. Antimicrob. Chemother.21:525-533.
    OpenUrlCrossRefPubMed
  124. 124.
    Rice, L. B., S. H. Marshall, L. L. Carias, L. Sutton, and G. A. Jacoby. 1993. Sequences of MGH-1, YOU-1, and YOU-2 extended-spectrum β-lactamase genes. Antimicrob. Agents Chemother.37:2760-2761.
    OpenUrlAbstract/FREE Full Text
  125. 125.
    Rice, L. B., S. H. Willey, G. A. Papanicolaou, A. A. Medeiros, G. M. Eliopoulos, R. C. Moellering, Jr., and G. A. Jacoby. 1990. Outbreak of ceftazidime resistance caused by extended-spectrum β-lactamases at a Massachusetts chronic-care facility. Antimicrob. Agents Chemother.34:2193-2199.
    OpenUrlAbstract/FREE Full Text
  126. 126.
    Richmond, M. H. 1963. Purification and properties of the exopenicillinase from Staphylococcus aureus. Biochem. J.88:452-459.
    OpenUrlFREE Full Text
  127. 127.
    Rogers, M. B., A. C. Parker, and C. J. Smith. 1993. Cloning and characterization of the endogenous cephalosporinase gene, cepA, from Bacteroides fragilis reveals a new subgroup of Ambler class A β-lactamases. Antimicrob. Agents Chemother.37:2391-2400.
    OpenUrlAbstract/FREE Full Text
  128. 128.
    Rossolini, G. M., M. A. Condemi, F. Pantanella, J. D. Docquier, G. Amicosante, and M. C. Thaller. 2001. Metallo-β-lactamase producers in environmental microbiota: new molecular class B enzyme in Janthinobacterium lividum. Antimicrob. Agents Chemother.45:837-844.
    OpenUrlAbstract/FREE Full Text
  129. 129.
    Rossolini, G. M., N. Franceschini, M. L. Riccio, P. S. Mercuri, M. Perilli, M. Galleni, J. M. Frere, and G. Amicosante. 1998. Characterization and sequence of the Chryseobacterium (Flavobacterium) meningosepticum carbapenemase: a new molecular class B β-lactamase showing a broad substrate profile. Biochem. J.332:145-152.
    OpenUrlAbstract/FREE Full Text
  130. 130.
    Rubin, L. G., A. A. Medeiros, R. H. Yolken, and E. R. Moxon. 1981. Ampicillin treatment failure of apparently β-lactamase-negative Haemophilus influenzae type b meningitis due to novel β-lactamase. Lancetii:1008-1010.
    OpenUrlPubMedWeb of Science
  131. 131.
    Saavedra, M. J., L. Peixe, J. C. Sousa, I. Henriques, A. Alves, and A. Correia. 2003. Sfh-I, a subclass B2 metallo-β-lactamase from a Serratia fonticola environmental isolate. Antimicrob. Agents Chemother.47:2330-2333.
    OpenUrlAbstract/FREE Full Text
  132. 132.
    Saino, Y., F. Kobayashi, M. Inoue, and S. Mitsuhashi. 1982. Purification and properties of inducible penicillin β-lactamase isolated from Pseudomonas maltophilia. Antimicrob. Agents Chemother.22:564-570.
    OpenUrlAbstract/FREE Full Text
  133. 133.
    Shlaes, D. M., A. A. Medeiros, M. A. Kron, C. Currie-McCumber, E. Papa, and C. V. Vartian. 1986. Novel plasmid-mediated β-lactamase in members of the family Enterobacteriaceae from Ohio. Antimicrob. Agents Chemother.30:220-224.
    OpenUrlAbstract/FREE Full Text
  134. 134.
    Silva, J., C. Aguilar, G. Ayala, M. A. Estrada, U. Garza-Ramos, R. Lara-Lemus, and L. Ledezma. 2000. TLA-1: a new plasmid-mediated extended-spectrum β-lactamase from Escherichia coli. Antimicrob. Agents Chemother.44:997-1003.
    OpenUrlAbstract/FREE Full Text
  135. 135.
    Simm, A. M., C. S. Higgins, S. T. Pullan, M. B. Avison, P. Niumsup, O. Erdozain, P. M. Bennett, and T. R. Walsh. 2001. A novel metallo-β-lactamase, Mbl1b, produced by the environmental bacterium Caulobacter crescentus. FEBS Lett.509:350-354.
    OpenUrlCrossRefPubMedWeb of Science
  136. 136.
    Simpson, I. N., S. J. Plested, M. J. Budin-Jones, J. Lees, R. W. Hedges, and G. A. Jacoby. 1983. Characterisation of a novel plasmid-mediated β-lactamase and its contribution to β-lactam resistance in Pseudomonas aeruginosa. FEMS Microbiol. Lett.19:23-27.
    OpenUrlCrossRef
  137. 137.
    Sirot, D., C. Recule, E. B. Chaibi, L. Bret, J. Croize, C. Chanal-Claris, R. Labia, and J. Sirot. 1997. A complex mutant of TEM-1 β-lactamase with mutations encountered in both IRT-4 and extended-spectrum TEM-15, produced by an Escherichia coli clinical isolate. Antimicrob. Agents Chemother.41:1322-1325.
    OpenUrlAbstract/FREE Full Text
  138. 138.
    Sirot, D., J. Sirot, R. Labia, A. Morand, P. Courvalin, A. Darfeuille-Michaud, R. Perroux, and R. Cluzel. 1987. Transferable resistance to third-generation cephalosporins in clinical isolates of Klebsiella pneumoniae: identification of CTX-1, a novel β-lactamase. J. Antimicrob. Chemother.20:323-334.
    OpenUrlCrossRefPubMedWeb of Science
  139. 139.
    Smith, C. J., T. K. Bennett, and A. C. Parker. 1994. Molecular and genetic analysis of the Bacteroides uniformis cephalosporinase gene, cblA, encoding the species-specific β-lactamase. Antimicrob. Agents Chemother.38:1711-1715.
    OpenUrlAbstract/FREE Full Text
  140. 140.
    Sougakoff, W., S. Goussard, G. Gerbaud, and P. Courvalin. 1988. Plasmid-mediated resistance to third-generation cephalosporins caused by point mutations in TEM-type penicillinase genes. Rev. Infect. Dis.10:879-884.
    OpenUrlCrossRefPubMedWeb of Science
  141. 141.
    Sougakoff, W., A. Petit, S. Goussard, D. Sirot, A. Bure, and P. Courvalin. 1989. Characterization of the plasmid genes blaT-4 and blaT-5 which encode the broad-spectrum β-lactamases TEM-4 and TEM-5 in Enterobacteriaceae. Gene78:339-348.
    OpenUrlCrossRefPubMedWeb of Science
  142. 142.
    Spencer, R. C., P. F. Wheat, T. G. Winstanley, D. M. Cox, and S. J. Plested. 1987. Novel β-lactamase in a clinical isolate of Klebsiella pneumoniae conferring unusual resistance to β-lactam antibiotics. J. Antimicrob. Chemother.20:919-921.
    OpenUrlCrossRefPubMedWeb of Science
  143. 143.
    Teo, J. W., A. Suwanto, and C. L. Poh. 2000. Novel β-lactamase genes from two environmental isolates of Vibrio harveyi. Antimicrob. Agents Chemother.44:1309-1314.
    OpenUrlAbstract/FREE Full Text
  144. 144.
    Thompson, J. S., and M. H. Malamy. 1990. Sequencing the gene for an imipenem-cefoxitin-hydrolyzing enzyme (CfiA) from Bacteroides fragilis TAL2480 reveals strong similarity between CfiA and Bacillus cereus β-lactamase II. J. Bacteriol.172:2584-2593.
    OpenUrlAbstract/FREE Full Text
  145. 145.
    Thomson, C. J., and S. G. Amyes. 1992. TRC-1: emergence of a clavulanic acid-resistant TEM β-lactamase in a clinical strain. FEMS Microbiol. Lett.70:113-117.
    OpenUrlPubMed
  146. 146.
    Timm, J., M. G. Perilli, C. Duez, J. Trias, G. Orefici, L. Fattorini, G. Amicosante, A. Oratore, B. Joris, J. M. Frère, et al. 1994. Transcription and expression analysis, using lacZ and phoA gene fusions, of Mycobacterium fortuitum β-lactamase genes cloned from a natural isolate and a high-level β-lactamase producer. Mol. Microbiol.12:491-504.
    OpenUrlCrossRefPubMedWeb of Science
  147. 147.
    Toleman, M. A., A. M. Simm, T. A. Murphy, A. C. Gales, D. J. Biedenbach, R. N. Jones, and T. R. Walsh. 2002. Molecular characterization of SPM-1, a novel metallo-β-lactamase isolated in Latin America: report from the SENTRY antimicrobial survillance programme. J. Antimicrob. Chemother.50:673-679.
    OpenUrlCrossRefPubMedWeb of Science
  148. 148.
    Tzouvelekis, L. S., E. Tzelepi, A. F. Mentis, and A. Tsakris. 1993. Identification of a novel plasmid-mediated β-lactamase with chromosomal cephalosporinase characteristics from Klebsiella pneumoniae. J. Antimicrob. Chemother.31:645-654.
    OpenUrlCrossRefPubMedWeb of Science
  149. 149.
    Vedel, G., A. Bellaaouaj, L. Gilly, R. Labia, A. Philippon, P. N. Vot, and G. Paul. 1992. Clinical isolates of Escherichia coli producing TRI β-lactamases: novel TEM-enzymes conferring resistance to β-lactamase inhibitors. J. Antimicrob. Chemother.30:449-462.
    OpenUrlCrossRefPubMedWeb of Science
  150. 150.
    Vimont, S., L. Poirel, T. Naas, and P. Nordmann. 2002. Identification of a chromosome-borne expanded-spectrum class A β-lactamase from Erwinia persicina. Antimicrob. Agents Chemother.46:3401-3405.
    OpenUrlAbstract/FREE Full Text
  151. 151.
    Vuye, A., G. Verschraegen, and G. Claeys. 1989. Plasmid-mediated β-lactamases in clinical isolates of Klebsiella pneumoniae and Escherichia coli resistant to ceftazidime. Antimicrob. Agents Chemother.33:757-761.
    OpenUrlAbstract/FREE Full Text
  152. 152.
    Walckenaer, E., L. Poirel, V. Leflon-Guibout, P. Nordmann, and M. H. Nicolas-Chanoine. 2004. Genetic and biochemical characterization of the chromosomal class A β-lactamases of Raoultella (formerly Klebsiella) planticola and Raoultella ornithinolytica. Antimicrob. Agents Chemother.48:305-312.
    OpenUrlAbstract/FREE Full Text
  153. 153.
    Wallace, R. J., Jr., V. A. Steingrube, D. R. Nash, D. G. Hollis, C. Flanagan, B. A. Brown, A. Labidi, and R. E. Weaver. 1989. BRO β-lactamases of Branhamella catarrhalis and Moraxella subgenus Moraxella, including evidence for chromosomal β-lactamase transfer by conjugation in B. catarrhalis,N. nonliquefaciens, and M. lacunata. Antimicrob. Agents Chemother.33:1845-1854.
    OpenUrlAbstract/FREE Full Text
  154. 154.
    Walsh, T. R., W. A. Neville, M. H. Haran, D. Tolson, D. J. Payne, J. H. Bateson, A. P. MacGowan, and P. M. Bennett. 1998. Nucleotide and amino acid sequences of the metallo-β-lactamase, ImiS, from Aeromonas veronii bv. sobria. >Antimicrob. Agents Chemother.42:436-439.
    OpenUrlAbstract/FREE Full Text
  155. 155.
    Watanabe, Y., T. Yokota, Y. Higashi, Y. Wakai, and Y. Mine. 1991. In vitro and in vivo transferrable beta-lactam resistance due to a new plasmid-mediated oxyiminocephalosporinase from a clinical isolate of Proteus mirabilis. Microbiol. Immunol.35:87-97.
    OpenUrlPubMed
  156. 156.
    Weng, S. F., J. W. Lin, C. H. Chen, Y. Y. Chen, and Y. H. Tseng. 2004. Constitutive expression of a chromosomal class A (BJM group 2) β-lactamase in Xanthomonas campestris. Antimicrob. Agents Chemother.48:209-215.
    OpenUrlAbstract/FREE Full Text
  157. 157.
    Woodford, N., D. J. Payne, A. P. Johnson, M. J. Weinbren, R. M. Perinpanayagam, R. C. George, B. D. Cookson, and S. G. B. Amyes. 1990. Transferable cephalosporin resistance not inhibited by clavulanate in Escherichia coli. Lancet336:253.
    OpenUrlPubMed
  158. 158.↵
    Yagi, T., H. Kurokawa, K. Senda, S. Ichiyama, H. Ito, S. Ohsuka, K. Shibayama, K. Shimokata, N. Kato, M. Ohta, and Y. Arakawa. 1997. Nosocomial spread of cephem-resistant Escherichia coli strains carrying multiple Toho-1-like β-lactamase genes. Antimicrob. Agents Chemother.41:2606-2611.
    OpenUrlAbstract/FREE Full Text
  159. 159.
    Yang, Y., G. A. Jacoby, and D. M. Livermore. 1988. LXA-1: a new plasmid-mediated β-lactamase giving low-level resistance. FEMS Microbiol. Lett.52:97-102.
    OpenUrlCrossRef
  160. 160.
    Yigit, H., A. M. Queenan, G. J. Anderson, A. Domenech-Sanchez, J. W. Biddle, C. D. Steward, S. Alberti, K. Bush, and F. C. Tenover. 2001. Novel carbapenem-hydrolyzing β-lactamase, KPC-1, from a carbapenem-resistant strain of Klebsiella pneumoniae. Antimicrob. Agents Chemother.45:1151-1161.
    OpenUrlAbstract/FREE Full Text
PreviousNext
Back to top
Download PDF
Citation Tools
β-Lactamase Nomenclature
George A. Jacoby
Antimicrobial Agents and Chemotherapy Mar 2006, 50 (4) 1123-1129; DOI: 10.1128/AAC.50.4.1123-1129.2006

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Print

Alerts
Sign In to Email Alerts with your Email Address
Email

Thank you for sharing this Antimicrobial Agents and Chemotherapy article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
β-Lactamase Nomenclature
(Your Name) has forwarded a page to you from Antimicrobial Agents and Chemotherapy
(Your Name) thought you would be interested in this article in Antimicrobial Agents and Chemotherapy.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
β-Lactamase Nomenclature
George A. Jacoby
Antimicrobial Agents and Chemotherapy Mar 2006, 50 (4) 1123-1129; DOI: 10.1128/AAC.50.4.1123-1129.2006
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Top
  • Article
    • REFERENCES
  • Figures & Data
  • Info & Metrics
  • PDF

KEYWORDS

Terminology as Topic
beta-lactamases

Related Articles

Cited By...

About

  • About AAC
  • Editor in Chief
  • Editorial Board
  • Policies
  • For Reviewers
  • For the Media
  • For Librarians
  • For Advertisers
  • Alerts
  • AAC Podcast
  • RSS
  • FAQ
  • Permissions
  • Journal Announcements

Authors

  • ASM Author Center
  • Submit a Manuscript
  • Article Types
  • Ethics
  • Contact Us

Follow #AACJournal

@ASMicrobiology

       

ASM Journals

ASM journals are the most prominent publications in the field, delivering up-to-date and authoritative coverage of both basic and clinical microbiology.

About ASM | Contact Us | Press Room

 

ASM is a member of

Scientific Society Publisher Alliance

 

American Society for Microbiology
1752 N St. NW
Washington, DC 20036
Phone: (202) 737-3600

Copyright © 2021 American Society for Microbiology | Privacy Policy | Website feedback

Print ISSN: 0066-4804; Online ISSN: 1098-6596