ABSTRACT
The prevalence of heteroresistant vancomycin-intermediate Staphylococcus aureus (hVISA) is 1.3% in published studies. Clinical associations include high-inoculum infections and glycopeptide failure, with hVISA infections associated with a 2.37-times-greater failure rate (95% confidence interval [CI], 1.53 to 3.67) compared to vancomycin-sensitive Staphylococcus aureus (VSSA) infections. Despite this, 30-day mortality rates were similar to those for VSSA infections (odds ratio [OR], 1.18; 95% CI, 0.81 to 1.74). The optimal therapy for hVISA requires further study.
In the presence of selection pressure, vancomycin-susceptible Staphylococcus aureus (VSSA) isolates are able to transform their cell wall and become less susceptible to vancomycin (51). These vancomycin-intermediate S. aureus (VISA) isolates are defined by a vancomycin broth microdilution MIC of 4 to 8 μg/ml (57) and may progress through a precursor phenotype known as heteroresistant vancomycin-intermediate Staphylococcus aureus (hVISA) (11). Although the precise definition is disputed, heteroresistance refers to the presence of a resistant subpopulation (typically at a frequency of ≤10−5 to 10−6 CFU) in a fully susceptible isolate (a broth microdilution MIC of ≤2 μg/ml).
Detection.
hVISA detection is problematic, as commercial susceptibility platforms use inocula lower than the required threshold. As a consequence, multiple screening and detection methods using higher inocula and growth promotion of resistant subpopulations have been developed. Controversy remains, as some of these methods may select for resistant subpopulations in vitro rather than detect the in vivo presence of heteroresistance (60). The most accurate and reproducible method is the modified population analysis profile (PAP)-area under the curve (AUC), which utilizes the plot of the number of viable colonies against vancomycin concentration. An AUC ratio of the test strain to the reference strain (Mu3) of ≥0.9 confirms an hVISA isolate. However, PAP-AUC use is limited as it is expensive and labor- and time-intensive.
Epidemiology.
Following the first documented VISA (Mu50) and hVISA (Mu3) strains from Japan (22, 23), both phenotypes have been reported worldwide. The precise burden of hVISA is difficult to determine given the range of testing methodologies, definitions, and changes in vancomycin susceptibility breakpoints in 2006. This may explain the marked variation in hVISA prevalences detected across institutions, geographical regions, and patient populations, with surveillance studies generally confirming lower hVISA rates than those for selected clinical isolates. Nevertheless, the overall hVISA prevalence remains low at approximately 1.3% of all methicillin-resistant S. aureus (MRSA) isolates tested (Table 1) (1-6, 8, 9, 12-16, 18-20, 22, 24, 29-39, 41-47, 49, 50, 52, 55, 56, 58, 61).
TABLE 1. Prevalence of hVISA based on method of screening/detection, origin of study, and isolate selection
Clinical significance of hVISA.
All English-language studies containing the term S. aureus and any of the terms reduced susceptibility, intermediate susceptibility, and heteroresistance or heteroresistant to vancomycin or glycopeptides were identified through Medline (2006 to 2010) and reviewed. All articles with clinical details are summarized in Table 2 (2, 4, 5, 8, 16, 24, 28, 31, 33, 37, 38, 41). Considerable heterogeneity exists between studies due to the differing patient populations studied, testing methodologies used, and MRSA isolates selected (i.e., initial blood culture compared to final isolate). Despite this, high-inoculum infections (such as infective endocarditis, osteomyelitis, deep abscesses, and prosthetic device infections) (8, 16, 37) and vancomycin treatment failure (defined as persistent infection or bacteremia duration and/or ongoing signs of infection) (2, 4, 8, 16, 42) were common associations with hVISA infection. After the available data were pooled, the odds of glycopeptide failure were 2.37 times greater for hVISA than for VSSA infections (odds ratio [OR], 2.37; 95% confidence interval [CI], 1.53 to 3.67) (Fig. 1). Since high-inoculum infections are independently associated with bacteremic persistence (therapeutic failure) (10, 17, 31) and de novo hVISA infections do not always result in treatment failure, hVISA may reflect the consequence rather than the cause of treatment failure.
FIG. 1. Forest plot (using Mantel-Haenszel analysis) of events denoting vancomycin (VAN) treatment failure (with all definitions regarded the same) in hVISA- compared to VSSA-infected patients. Squares indicate point estimates, and the size of the square indicates the weight of each study. *, data obtained by personal communication.
TABLE 2. Published studies containing clinical details of hVISA-infected patients
Intuitively, persistent bacteremia should result in greater morbidity. However, compared to VSSA infections, hVISA persistence does not lead to more metastatic complications (41). Other parameters of morbidity have not been extensively examined. A significant increase in the mean hospital stay in patients with hVISA infection has been documented in one study (16). Similarly, infection-related complications are generally not reported (secondary to the heterogeneity of the principal diagnosis) except for one study where hVISA infective endocarditis patients were more likely to develop congestive cardiac failure (4).
Significance of MIC in hVISA.
The proportion of hVISA detected is directly related to increases in vancomycin MIC with the majority (>80%) of hVISA isolates demonstrating an Etest MIC of ≥2 μg/ml (41). Although a detailed discussion of the clinical significance of higher MICs is beyond the scope of this review, several studies have documented greater mortality associated with higher-MIC-susceptible MRSA isolates (generally between 1.5 and 2 μg/ml) (21, 53). Only one study has examined both variables (vancomycin MIC and heteroresistance phenotype) in the same isolates, with neither variable predictive of overall mortality on multivariate analysis (41). Thus, the relative contribution of heteroresistance to MIC-related outcomes remains unclear and requires further study.
Mortality and hVISA.
Since hVISA is associated with parameters known to influence mortality (i.e., high-inoculum infections, persistent bacteremia, and high vancomycin MICs), one would expect an increased mortality compared to that of VSSA infections (Table 2). However, no study to date has had the power to detect such a difference. After all available data from comparative studies were pooled, hVISA was associated with a 30-day mortality rate similar to that of VSSA infections (OR, 1.18; 95% CI, 0.81 to 1.74) (Fig. 2). These findings can in part be explained by the reduced virulence and decreased host immune responses demonstrated in animal infection models and laboratory studies with hVISA infections (27, 40). A clinical study indirectly supports this link, with hVISA significantly more likely to be associated with colonization rather than infection (24).
FIG. 2. Forest plot (using Mantel-Haenszel analysis) of 30-day mortality in hVISA- compared to VSSA-infected patients with “events” denoting deaths in each group. Squares indicate point estimates, and the size of the square indicates the weight of each study.
Conclusion and therapeutic implications.
The role of vancomycin in the treatment of hVISA remains unclear, as heteroresistance may emerge during glycopeptide therapy, especially in infections associated with poor antibiotic penetration (infective endocarditis and osteomyelitis) (8). Despite these deficiencies, no new antibiotic has been documented to be superior to vancomycin (17). Alternative agents have been used successfully in numerous case reports (25). However, potential concerns remain when prescribing these agents. These include toxicity with prolonged linezolid use (7), possible cross-resistance with lipoglycopeptides (54), and the clinical relevance of emerging low-level daptomycin nonsusceptibility during treatment of hVISA infections (48). An important adjunct to antimicrobial therapy and a key component of success is surgical debridement for high-inoculum hVISA infections (26). Irrespective of treatment choice, MRSA bacteremia mortality remains high (59). Therefore, further research should be aimed at developing new agents and defining the optimal pharmacodynamic parameters of current antibiotics, including vancomycin, in targeting specific clinical contexts.
FOOTNOTES
- Received 16 August 2010.
- Returned for modification 21 October 2010.
- Accepted 2 November 2010.
- Accepted manuscript posted online 15 November 2010.
- Copyright © 2011, American Society for Microbiology. All Rights Reserved.
REFERENCES
- 1.↵
Adam, H. J., L. Louie, C. Watt, D. Gravel, E. Bryce, M. Loeb, A. Matlow, A. McGeer, M. R. Mulvey, and A. E. Simor. 2010. Detection and characterization of heterogeneous vancomycin-intermediate Staphylococcus aureus isolates in Canada: results from the Canadian Nosocomial Infection Surveillance Program, 1995-2006. Antimicrob. Agents Chemother. 54:945-949.
- 2.↵
Ariza, J., M. Pujol, J. Cabo, C. Pena, N. Fernandez, J. Linares, J. Ayats, and F. Gudiol. 1999. Vancomycin in surgical infections due to methicillin-resistant Staphylococcus aureus with heterogeneous resistance to vancomycin. Lancet 353:1587-1588.
- 3.
Aucken, H. M., M. Warner, M. Ganner, A. P. Johnson, J. F. Richardson, B. D. Cookson, and D. M. Livermore. 2000. Twenty months of screening for glycopeptide-intermediate Staphylococcus aureus. J. Antimicrob. Chemother. 46:639-640.
- 4.↵
Bae, I. G., J. J. Federspiel, J. M. Miro, C. W. Woods, L. Park, M. J. Rybak, T. H. Rude, S. Bradley, S. Bukovski, C. G. de la Maria, S. S. Kanj, T. M. Korman, F. Marco, D. R. Murdoch, P. Plesiat, M. Rodriguez-Creixems, P. Reinbott, L. Steed, P. Tattevin, M. F. Tripodi, K. L. Newton, G. R. Corey, and V. G. Fowler, Jr. 2009. Heterogeneous vancomycin-intermediate susceptibility phenotype in bloodstream methicillin-resistant Staphylococcus aureus isolates from an international cohort of patients with infective endocarditis: prevalence, genotype, and clinical significance. J. Infect. Dis. 200:1355-1366.
- 5.↵
Bert, F., J. Clarissou, F. Durand, D. Delefosse, C. Chauvet, P. Lefebvre, N. Lambert, and C. Branger. 2003. Prevalence, molecular epidemiology, and clinical significance of heterogeneous glycopeptide-intermediate Staphylococcus aureus in liver transplant recipients. J. Clin. Microbiol. 41:5147-5152.
- 6.↵
Bierbaum, G., K. Fuchs, W. Lenz, C. Szekat, and H. G. Sahl. 1999. Presence of Staphylococcus aureus with reduced susceptibility to vancomycin in Germany. Eur. J. Clin. Microbiol. Infect. Dis. 18:691-696.
- 7.↵
Bishop, E., S. Melvani, B. P. Howden, P. G. Charles, and M. L. Grayson. 2006. Good clinical outcomes but high rates of adverse reactions during linezolid therapy for serious infections: a proposed protocol for monitoring therapy in complex patients. Antimicrob. Agents Chemother. 50:1599-1602.
- 8.↵
Charles, P. G., P. B. Ward, P. D. Johnson, B. P. Howden, and M. L. Grayson. 2004. Clinical features associated with bacteremia due to heterogeneous vancomycin-intermediate Staphylococcus aureus. Clin. Infect. Dis. 38:448-451.
- 9.↵
Chung, G., J. Cha, S. Han, H. Jang, K. Lee, J. Yoo, H. Kim, S. Eun, B. Kim, O. Park, and Y. Lee. 2010. Nationwide surveillance study of vancomycin intermediate Staphylococcus aureus strains in Korean hospitals from 2001 to 2006. J. Microbiol. Biotechnol. 20:637-642.
- 10.↵
Cremieux, A. C., B. Maziere, J. M. Vallois, M. Ottaviani, A. Azancot, H. Raffoul, A. Bouvet, J. J. Pocidalo, and C. Carbon. 1989. Evaluation of antibiotic diffusion into cardiac vegetations by quantitative autoradiography. J. Infect. Dis. 159:938-944.
- 11.↵
Cui, L., X. Ma, K. Sato, K. Okuma, F. C. Tenover, E. M. Mamizuka, C. G. Gemmell, M. N. Kim, M. C. Ploy, N. El-Solh, V. Ferraz, and K. Hiramatsu. 2003. Cell wall thickening is a common feature of vancomycin resistance in Staphylococcus aureus. J. Clin. Microbiol. 41:5-14.
- 12.↵
Delgado, A., J. T. Riordan, R. Lamichhane-Khadka, D. C. Winnett, J. Jimenez, K. Robinson, F. G. O'Brien, S. A. Cantore, and J. E. Gustafson. 2007. Hetero-vancomycin-intermediate methicillin-resistant Staphylococcus aureus isolate from a medical center in Las Cruces, New Mexico. J. Clin. Microbiol. 45:1325-1329.
- 13.
Denis, O., C. Nonhoff, B. Byl, C. Knoop, S. Bobin-Dubreux, and M. J. Struelens. 2002. Emergence of vancomycin-intermediate Staphylococcus aureus in a Belgian hospital: microbiological and clinical features. J. Antimicrob. Chemother. 50:383-391.
- 14.
Eguia, J. M., C. Liu, M. Moore, E. M. Wrone, J. Pont, J. L. Gerberding, and H. F. Chambers. 2005. Low colonization prevalence of Staphylococcus aureus with reduced vancomycin susceptibility among patients undergoing hemodialysis in the San Francisco Bay area. Clin. Infect. Dis. 40:1617-1624.
- 15.
Fitzgibbon, M. M., A. S. Rossney, and B. O'Connell. 2007. Investigation of reduced susceptibility to glycopeptides among methicillin-resistant Staphylococcus aureus isolates from patients in Ireland and evaluation of agar screening methods for detection of heterogeneously glycopeptide-intermediate S. aureus. J. Clin. Microbiol. 45:3263-3269.
- 16.↵
Fong, R. K., J. Low, T. H. Koh, and A. Kurup. 2009. Clinical features and treatment outcomes of vancomycin-intermediate Staphylococcus aureus (VISA) and heteroresistant vancomycin-intermediate Staphylococcus aureus (hVISA) in a tertiary care institution in Singapore. Eur. J. Clin. Microbiol. Infect. Dis. 28:983-987.
- 17.↵
Fowler, V. G., Jr., H. W. Boucher, G. R. Corey, E. Abrutyn, A. W. Karchmer, M. E. Rupp, D. P. Levine, H. F. Chambers, F. P. Tally, G. A. Vigliani, C. H. Cabell, A. S. Link, I. DeMeyer, S. G. Filler, M. Zervos, P. Cook, J. Parsonnet, J. M. Bernstein, C. S. Price, G. N. Forrest, G. Fatkenheuer, M. Gareca, S. J. Rehm, H. R. Brodt, A. Tice, and S. E. Cosgrove. 2006. Daptomycin versus standard therapy for bacteremia and endocarditis caused by Staphylococcus aureus. N. Engl. J. Med. 355:653-665.
- 18.↵
Franchi, D., M. W. Climo, A. H. Wong, M. B. Edmond, and R. P. Wenzel. 1999. Seeking vancomycin resistant Staphylococcus aureus among patients with vancomycin-resistant enterococci. Clin. Infect. Dis. 29:1566-1568.
- 19.
Garnier, F., D. Chainier, T. Walsh, A. Karlsson, A. Bolmstrom, C. Grelaud, M. Mounier, F. Denis, and M. C. Ploy. 2006. A 1 year surveillance study of glycopeptide-intermediate Staphylococcus aureus strains in a French hospital. J. Antimicrob. Chemother. 57:146-149.
- 20.↵
Geisel, R., F. J. Schmitz, L. Thomas, G. Berns, O. Zetsche, B. Ulrich, A. C. Fluit, H. Labischinsky, and W. Witte. 1999. Emergence of heterogeneous intermediate vancomycin resistance in Staphylococcus aureus isolates in the Dusseldorf area. J. Antimicrob. Chemother. 43:846-848.
- 21.↵
Hidayat, L. K., D. I. Hsu, R. Quist, K. A. Shriner, and A. Wong-Beringer. 2006. High-dose vancomycin therapy for methicillin-resistant Staphylococcus aureus infections: efficacy and toxicity. Arch. Intern. Med. 166:2138-2144.
- 22.↵
Hiramatsu, K., N. Aritaka, H. Hanaki, S. Kawasaki, Y. Hosoda, S. Hori, Y. Fukuchi, and I. Kobayashi. 1997. Dissemination in Japanese hospitals of strains of Staphylococcus aureus heterogeneously resistant to vancomycin. Lancet 350:1670-1673.
- 23.↵
Hiramatsu, K., H. Hanaki, T. Ino, K. Yabuta, T. Oguri, and F. C. Tenover. 1997. Methicillin-resistant Staphylococcus aureus clinical strain with reduced vancomycin susceptibility. J. Antimicrob. Chemother. 40:135-136.
- 24.↵
Horne, K. C., B. P. Howden, E. A. Grabsch, M. Graham, P. B. Ward, S. Xie, B. C. Mayall, P. D. Johnson, and M. L. Grayson. 2009. Prospective comparison of the clinical impacts of heterogeneous vancomycin-intermediate methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-susceptible MRSA. Antimicrob. Agents Chemother. 53:3447-3452.
- 25.↵
Howden, B. P., J. K. Davies, P. D. Johnson, T. P. Stinear, and M. L. Grayson. 2010. Reduced vancomycin susceptibility in Staphylococcus aureus, including vancomycin-intermediate and heterogeneous vancomycin-intermediate strains: resistance mechanisms, laboratory detection, and clinical implications. Clin. Microbiol. Rev. 23:99-139.
- 26.↵
Howden, B. P., P. D. Johnson, P. G. Charles, and M. L. Grayson. 2004. Failure of vancomycin for treatment of methicillin-resistant Staphylococcus aureus infections. Clin. Infect. Dis. 39:1544.
- 27.↵
Howden, B. P., D. J. Smith, A. Mansell, P. D. Johnson, P. B. Ward, T. P. Stinear, and J. K. Davies. 2008. Different bacterial gene expression patterns and attenuated host immune responses are associated with the evolution of low-level vancomycin resistance during persistent methicillin-resistant Staphylococcus aureus bacteraemia. BMC Microbiol. 8:39.
- 28.↵
Howden, B. P., P. B. Ward, P. G. Charles, T. M. Korman, A. Fuller, P. du Cros, E. A. Grabsch, S. A. Roberts, J. Robson, K. Read, N. Bak, J. Hurley, P. D. Johnson, A. J. Morris, B. C. Mayall, and M. L. Grayson. 2004. Treatment outcomes for serious infections caused by methicillin-resistant Staphylococcus aureus with reduced vancomycin susceptibility. Clin. Infect. Dis. 38:521-528.
- 29.↵
Ike, Y., Y. Arakawa, X. Ma, K. Tatewaki, M. Nagasawa, H. Tomita, K. Tanimoto, and S. Fujimoto. 2001. Nationwide survey shows that methicillin-resistant Staphylococcus aureus strains heterogeneously and intermediately resistant to vancomycin are not disseminated throughout Japanese hospitals. J. Clin. Microbiol. 39:4445-4451.
- 30.
Kantzanou, M., P. T. Tassios, A. Tseleni-Kotsovili, N. J. Legakis, and A. C. Vatopoulos. 1999. Reduced susceptibility to vancomycin of nosocomial isolates of methicillin-resistant Staphylococcus aureus. J. Antimicrob. Chemother. 43:729-731.
- 31.↵
Khosrovaneh, A., K. Riederer, S. Saeed, M. S. Tabriz, A. R. Shah, M. M. Hanna, M. Sharma, L. B. Johnson, M. G. Fakih, and R. Khatib. 2004. Frequency of reduced vancomycin susceptibility and heterogeneous subpopulation in persistent or recurrent methicillin-resistant Staphylococcus aureus bacteremia. Clin. Infect. Dis. 38:1328-1330.
- 32.
Kim, H. B., W. B. Park, K. D. Lee, Y. J. Choi, S. W. Park, M. D. Oh, E. C. Kim, and K. W. Choe. 2003. Nationwide surveillance for Staphylococcus aureus with reduced susceptibility to vancomycin in Korea. J. Clin. Microbiol. 41:2279-2281.
- 33.↵
Kim, M. N., S. H. Hwang, Y. J. Pyo, H. M. Mun, and C. H. Pai. 2002. Clonal spread of Staphylococcus aureus heterogeneously resistant to vancomycin in a university hospital in Korea. J. Clin. Microbiol. 40:1376-1380.
- 34.
Kirby, A., R. Graham, N. J. Williams, M. Wootton, C. M. Broughton, M. Alanazi, J. Anson, T. J. Neal, and C. M. Parry. 2010. Staphylococcus aureus with reduced glycopeptide susceptibility in Liverpool, UK. J. Antimicrob. Chemother. 65:721-724.
- 35.
Kosowska-Shick, K., L. M. Ednie, P. McGhee, K. Smith, C. D. Todd, A. Wehler, and P. C. Appelbaum. 2008. Incidence and characteristics of vancomycin nonsusceptible strains of methicillin-resistant Staphylococcus aureus at Hershey Medical Center. Antimicrob. Agents Chemother. 52:4510-4513.
- 36.
Lulitanond, A., C. Engchanil, P. Chaimanee, M. Vorachit, T. Ito, and K. Hiramatsu. 2009. The first vancomycin-intermediate Staphylococcus aureus strains isolated from patients in Thailand. J. Clin. Microbiol. 47:2311-2316.
- 37.↵
Maor, Y., M. Hagin, N. Belausov, N. Keller, D. Ben-David, and G. Rahav. 2009. Clinical features of heteroresistant vancomycin-intermediate Staphylococcus aureus bacteremia versus those of methicillin-resistant S. aureus bacteremia. J. Infect. Dis. 199:619-624.
- 38.↵
Maor, Y., G. Rahav, N. Belausov, D. Ben-David, G. Smollan, and N. Keller. 2007. Prevalence and characteristics of heteroresistant vancomycin-intermediate Staphylococcus aureus bacteremia in a tertiary care center. J. Clin. Microbiol. 45:1511-1514.
- 39.↵
Marchese, A., G. Balistreri, E. Tonoli, E. A. Debbia, and G. C. Schito. 2000. Heterogeneous vancomycin resistance in methicillin-resistant Staphylococcus aureus strains isolated in a large Italian hospital. J. Clin. Microbiol. 38:866-869.
- 40.↵
McCallum, N., H. Karauzum, R. Getzmann, M. Bischoff, P. Majcherczyk, B. Berger-Bachi, and R. Landmann. 2006. In vivo survival of teicoplanin-resistant Staphylococcus aureus and fitness cost of teicoplanin resistance. Antimicrob. Agents Chemother. 50:2352-2360.
- 41.↵
Musta, A. C., K. Riederer, S. Shemes, P. Chase, J. Jose, L. B. Johnson, and R. Khatib. 2009. Vancomycin MIC plus heteroresistance and outcome of methicillin-resistant Staphylococcus aureus bacteremia: trends over 11 years. J. Clin. Microbiol. 47:1640-1644.
- 42.↵
Neoh, H. M., S. Hori, M. Komatsu, T. Oguri, F. Takeuchi, L. Cui, and K. Hiramatsu. 2007. Impact of reduced vancomycin susceptibility on the therapeutic outcome of MRSA bloodstream infections. Ann. Clin. Microbiol. Antimicrob. 6:13.
- 43.
Nonhoff, C., O. Denis, and M. J. Struelens. 2005. Low prevalence of methicillin-resistant Staphylococcus aureus with reduced susceptibility to glycopeptides in Belgian hospitals. Clin. Microbiol. Infect. 11:214-220.
- 44.
Reverdy, M. E., S. Jarraud, S. Bobin-Dubreux, E. Burel, P. Girardo, G. Lina, F. Vandenesch, and J. Etienne. 2001. Incidence of Staphylococcus aureus with reduced susceptibility to glycopeptides in two French hospitals. Clin. Microbiol. Infect. 7:267-272.
- 45.
Rybak, M. J., R. Cha, C. M. Cheung, V. G. Meka, and G. W. Kaatz. 2005. Clinical isolates of Staphylococcus aureus from 1987 and 1989 demonstrating heterogeneous resistance to vancomycin and teicoplanin. Diagn. Microbiol. Infect. Dis. 51:119-125.
- 46.
Rybak, M. J., S. N. Leonard, K. L. Rossi, C. M. Cheung, H. S. Sader, and R. N. Jones. 2008. Characterization of vancomycin-heteroresistant Staphylococcus aureus from the metropolitan area of Detroit, Michigan, over a 22-year period (1986 to 2007). J. Clin. Microbiol. 46:2950-2954.
- 47.↵
Sader, H. S., R. N. Jones, K. L. Rossi, and M. J. Rybak. 2009. Occurrence of vancomycin-tolerant and heterogeneous vancomycin-intermediate strains (hVISA) among Staphylococcus aureus causing bloodstream infections in nine USA hospitals. J. Antimicrob. Chemother. 64:1024-1028.
- 48.↵
Sakoulas, G., J. Alder, C. Thauvin-Eliopoulos, R. C. Moellering, Jr., and G. M. Eliopoulos. 2006. Induction of daptomycin heterogeneous susceptibility in Staphylococcus aureus by exposure to vancomycin. Antimicrob. Agents Chemother. 50:1581-1585.
- 49.↵
Sancak, B., S. Ercis, D. Menemenlioglu, S. Colakoglu, and G. Hascelik. 2005. Methicillin-resistant Staphylococcus aureus heterogeneously resistant to vancomycin in a Turkish university hospital. J. Antimicrob. Chemother. 56:519-523.
- 50.↵
Schmitz, F. J., A. Krey, R. Geisel, J. Verhoef, H. P. Heinz, and A. C. Fluit. 1999. Susceptibility of 302 methicillin-resistant Staphylococcus aureus isolates from 20 European university hospitals to vancomycin and alternative antistaphylococcal compounds. SENTRY Participants Group. Eur. J. Clin. Microbiol. Infect. Dis. 18:528-530.
- 51.↵
Sieradzki, K., and A. Tomasz. 2003. Alterations of cell wall structure and metabolism accompany reduced susceptibility to vancomycin in an isogenic series of clinical isolates of Staphylococcus aureus. J. Bacteriol. 185:7103-7110.
- 52.↵
Song, J. H., K. Hiramatsu, J. Y. Suh, K. S. Ko, T. Ito, M. Kapi, S. Kiem, Y. S. Kim, W. S. Oh, K. R. Peck, and N. Y. Lee. 2004. Emergence in Asian countries of Staphylococcus aureus with reduced susceptibility to vancomycin. Antimicrob. Agents Chemother. 48:4926-4928.
- 53.↵
Soriano, A., F. Marco, J. A. Martinez, E. Pisos, M. Almela, V. P. Dimova, D. Alamo, M. Ortega, J. Lopez, and J. Mensa. 2008. Influence of vancomycin minimum inhibitory concentration on the treatment of methicillin-resistant Staphylococcus aureus bacteremia. Clin. Infect. Dis. 46:193-200.
- 54.↵
Streit, J. M., H. S. Sader, T. R. Fritsche, and R. N. Jones. 2005. Dalbavancin activity against selected populations of antimicrobial-resistant Gram-positive pathogens. Diagn. Microbiol. Infect. Dis. 53:307-310.
- 55.↵
Sun, W., H. Chen, Y. Liu, C. Zhao, W. W. Nichols, M. Chen, J. Zhang, Y. Ma, and H. Wang. 2009. Prevalence and characterization of heterogeneous vancomycin-intermediate Staphylococcus aureus isolates from 14 cities in China. Antimicrob. Agents Chemother. 53:3642-3649.
- 56.↵
Tallent, S. M., T. Bischoff, M. Climo, B. Ostrowsky, R. P. Wenzel, and M. B. Edmond. 2002. Vancomycin susceptibility of oxacillin-resistant Staphylococcus aureus isolates causing nosocomial bloodstream infections. J. Clin. Microbiol. 40:2249-2250.
- 57.↵
Tenover, F. C., and R. C. Moellering, Jr. 2007. The rationale for revising the Clinical and Laboratory Standards Institute vancomycin minimal inhibitory concentration interpretive criteria for Staphylococcus aureus. Clin. Infect. Dis. 44:1208-1215.
- 58.↵
Trakulsomboon, S., S. Danchaivijitr, Y. Rongrungruang, C. Dhiraputra, W. Susaemgrat, T. Ito, and K. Hiramatsu. 2001. First report of methicillin-resistant Staphylococcus aureus with reduced susceptibility to vancomycin in Thailand. J. Clin. Microbiol. 39:591-595.
- 59.↵
Turnidge, J. D., D. Kotsanas, W. Munckhof, S. Roberts, C. M. Bennett, G. R. Nimmo, G. W. Coombs, R. J. Murray, B. Howden, P. D. Johnson, and K. Dowling. 2009. Staphylococcus aureus bacteraemia: a major cause of mortality in Australia and New Zealand. Med. J. Aust. 191:368-373.
- 60.↵
Walsh, T. R., R. A. Howe, M. Wootton, P. M. Bennett, and A. P. MacGowan. 2001. Detection of glycopeptide resistance in Staphylococcus aureus. J. Antimicrob. Chemother. 47:357-358.
- 61.↵
Wong, S. S., P. L. Ho, P. C. Woo, and K. Y. Yuen. 1999. Bacteremia caused by staphylococci with inducible vancomycin heteroresistance. Clin. Infect. Dis. 29:760-767.