Skip to main content
  • ASM
    • Antimicrobial Agents and Chemotherapy
    • Applied and Environmental Microbiology
    • Clinical Microbiology Reviews
    • Clinical and Vaccine Immunology
    • EcoSal Plus
    • Eukaryotic Cell
    • Infection and Immunity
    • Journal of Bacteriology
    • Journal of Clinical Microbiology
    • Journal of Microbiology & Biology Education
    • Journal of Virology
    • mBio
    • Microbiology and Molecular Biology Reviews
    • Microbiology Resource Announcements
    • Microbiology Spectrum
    • Molecular and Cellular Biology
    • mSphere
    • mSystems
  • Log in
  • My alerts
  • My Cart

Main menu

  • Home
  • Articles
    • Current Issue
    • Accepted Manuscripts
    • COVID-19 Special Collection
    • Archive
    • Minireviews
  • For Authors
    • Submit a Manuscript
    • Scope
    • Editorial Policy
    • Submission, Review, & Publication Processes
    • Organization and Format
    • Errata, Author Corrections, Retractions
    • Illustrations and Tables
    • Nomenclature
    • Abbreviations and Conventions
    • Publication Fees
    • Ethics Resources and Policies
  • About the Journal
    • About AAC
    • Editor in Chief
    • Editorial Board
    • For Reviewers
    • For the Media
    • For Librarians
    • For Advertisers
    • Alerts
    • AAC Podcast
    • RSS
    • FAQ
  • Subscribe
    • Members
    • Institutions
  • ASM
    • Antimicrobial Agents and Chemotherapy
    • Applied and Environmental Microbiology
    • Clinical Microbiology Reviews
    • Clinical and Vaccine Immunology
    • EcoSal Plus
    • Eukaryotic Cell
    • Infection and Immunity
    • Journal of Bacteriology
    • Journal of Clinical Microbiology
    • Journal of Microbiology & Biology Education
    • Journal of Virology
    • mBio
    • Microbiology and Molecular Biology Reviews
    • Microbiology Resource Announcements
    • Microbiology Spectrum
    • Molecular and Cellular Biology
    • mSphere
    • mSystems

User menu

  • Log in
  • My alerts
  • My Cart

Search

  • Advanced search
Antimicrobial Agents and Chemotherapy
publisher-logosite-logo

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Accepted Manuscripts
    • COVID-19 Special Collection
    • Archive
    • Minireviews
  • For Authors
    • Submit a Manuscript
    • Scope
    • Editorial Policy
    • Submission, Review, & Publication Processes
    • Organization and Format
    • Errata, Author Corrections, Retractions
    • Illustrations and Tables
    • Nomenclature
    • Abbreviations and Conventions
    • Publication Fees
    • Ethics Resources and Policies
  • About the Journal
    • About AAC
    • Editor in Chief
    • Editorial Board
    • For Reviewers
    • For the Media
    • For Librarians
    • For Advertisers
    • Alerts
    • AAC Podcast
    • RSS
    • FAQ
  • Subscribe
    • Members
    • Institutions
Epidemiology and Surveillance

A Systematic Review and Meta-analyses of the Clinical Epidemiology of Carbapenem-Resistant Enterobacteriaceae

Karlijn van Loon, Anne F. Voor in ‘t holt, Margreet C. Vos
Karlijn van Loon
aDepartment of Medical Microbiology and Infectious Diseases, Erasmus MC University Medical Center, Rotterdam, The Netherlands
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Anne F. Voor in ‘t holt
aDepartment of Medical Microbiology and Infectious Diseases, Erasmus MC University Medical Center, Rotterdam, The Netherlands
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Margreet C. Vos
aDepartment of Medical Microbiology and Infectious Diseases, Erasmus MC University Medical Center, Rotterdam, The Netherlands
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
DOI: 10.1128/AAC.01730-17
  • Article
  • Figures & Data
  • Info & Metrics
  • PDF
Loading

ABSTRACT

Carbapenem-resistant Enterobacteriaceae (CRE) are major health care-associated pathogens and responsible for hospital outbreaks worldwide. To prevent a further increase in CRE infections and to improve infection prevention strategies, it is important to summarize the current knowledge about CRE infection prevention in hospital settings. This systematic review aimed to identify risk factors for CRE acquisition among hospitalized patients. In addition, we summarized the environmental sources/reservoirs and the most successful infection prevention strategies related to CRE. A total of 3,983 potentially relevant articles were identified and screened. Finally, we included 162 studies in the systematic review, of which 69 studies regarding risk factors for CRE acquisition were included in the random-effects meta-analysis studies. The meta-analyses regarding risk factors for CRE acquisition showed that the use of medical devices generated the highest pooled estimate (odds ratio [OR] = 5.09; 95% confidence interval [CI] = 3.38 to 7.67), followed by carbapenem use (OR = 4.71; 95% CI = 3.54 to 6.26). To control hospital outbreaks, bundled interventions, including the use of barrier/contact precautions for patients colonized or infected with CRE, are needed. In addition, it is necessary to optimize the therapeutic approach, which is an important message to infectious disease specialists, who need to be actively involved in a timely manner in the treatment of patients with known CRE infections or suspected carriers of CRE.

INTRODUCTION

Over the last 2 decades, a global dissemination of carbapenem-resistant Enterobacteriaceae (CRE) has been observed (1, 2). Currently, CRE are responsible for hospital outbreaks worldwide. Infections with these resistant bacteria are associated with high rates of morbidity and mortality, especially in patients with serious underlying disorders or patients admitted to the intensive care unit (ICU) (3).

Carbapenem resistance in Enterobacteriaceae is mainly mediated by the horizontal transfer of genes encoding carbapenem-hydrolyzing carbapenemase enzymes, although porin mutations or the overexpression of efflux pumps can also lead to carbapenem resistance, especially in combination with the hyperproduction of β-lactamase enzymes (4, 5). The production of carbapenemase enzymes is plasmid mediated and can be found in multiple different species of Enterobacteriaceae, such as Klebsiella pneumoniae and Escherichia coli (1, 5–7). These conjugative plasmids often carry additional genes conferring resistance to other antibiotics, such as fluoroquinolones and aminoglycosides, limiting the treatment options even more (3, 8).

To prevent a further increase in CRE infections in patients by improving infection prevention strategies, it is important to summarize the current knowledge about CRE in hospital settings. This systematic review and meta-analyses aimed to evaluate the clinical epidemiology of CRE by answering the following questions. First, what are the risk factors associated with CRE acquisition among hospitalized patients? Second, which environmental sources/reservoirs were identified in CRE outbreaks? Third, what were the essential components of effective infection control in preventing or ending hospital outbreaks?

RESULTS

During our literature search we identified 3,983 potentially relevant articles (Fig. 1). All titles and abstracts of the retrieved articles were screened against our inclusion and exclusion criteria, resulting in the exclusion of 3,720 publications. The remaining 263 articles underwent a second screening based on the full text. Seven full-text articles were received by e-mail after we contacted the corresponding authors. Finally, 162 articles were included in the systematic review (Fig. 1). For these studies, the data were extracted and the corresponding author was contacted with a request to check our completed data extraction form. Finally, the corresponding authors of 100 out of 162 articles (61.7%) responded to our request and provided feedback and additional information if necessary.

FIG 1
  • Open in new tab
  • Download powerpoint
FIG 1

Flow diagram of study selection for the systematic review of studies on carbapenem-resistant Enterobacteriaceae.

All included studies were published between 2005 and 2017. Two articles were written in Spanish, one article was written in Chinese, one article was written in Greek, and one article was written in Slovak. All other articles were written in English (n = 157, 96.9%). Most studies were conducted in Europe (n = 62; 38.3%), mainly in Greece (n = 14) and Italy (n = 11). A total of 52 studies (32.1%) were conducted in Asia, mainly in Israel (n = 18) and China (n = 16). The remaining 48 studies were conducted in North America (n = 31), South America (n = 12), Australia (n = 3), and Africa (n = 2). Thirty-seven (22.8%) out of the 162 studies used a study design involving only the ICU. The majority of studies focused on a single species of the Enterobacteriaceae family: a Klebsiella sp. (n = 103; 63.6%), an Enterobacter sp. (n = 5), E. coli (n = 4), Citrobacter freundii (n = 3), and Providencia stuartii (n = 2). The remaining 45 studies (27.8%) involved multiple Enterobacteriaceae species.

Carbapenemase production was described by 124 studies (76.5%), and these mainly involved KPC (n = 91), NDM (n = 24), and OXA (n = 22) carbapenemases. Nine studies (5.6%) mentioned the production of β-lactamase enzymes in combination with porin mutations. In addition, one study detected only porin mutations and two studies detected only β-lactamase production in their carbapenem-resistant Enterobacteriaceae isolates. Thirty-two studies (19.8%) did not mention or investigate the carbapenem resistance mechanism involved.

Factors associated with CRE acquisition.We identified 74 studies describing factors associated with CRE acquisition with a statistically significant odds ratio (OR) or hazard ratio (HR) obtained from a multivariable analysis. All reported protective factors for CRE acquisition are summarized in Table 1. All reported risk factors were divided into two groups: factors related to antibiotic exposure and other. In addition, five studies reported risk factors associated with mortality among CRE carriers, including nine risk factors and four protective factors (9–13). The highest odds ratio was reported for the risk factor ICU stay (OR = 11.10, 95% confidence interval [CI] = 1.85 to 66.95) (12).

View this table:
  • View inline
  • View popup
TABLE 1

Summary of studies reporting protective factors for acquisition of CRE, based on multivariable analysisa

Risk factors related to antibiotic exposure.All factors related to antibiotic exposure were further divided into nine smaller categories (Table 2). Carbapenem exposure (n = 26) and cephalosporin exposure (n = 15) were the most frequently mentioned risk factors associated with CRE acquisition.

View this table:
  • View inline
  • View popup
TABLE 2

Antibiotic exposure as a risk factor for acquisition of CRE, based on multivariable analysisc

For five out of the nine categories, a random-effects meta-analysis was performed (Table 3 and Fig. 2). For the risk factor carbapenem exposure, one study was excluded because it reported a hazard ratio instead of an odds ratio. The five meta-analyses included 43 studies reporting 63 risk factors (OR > 1) and 2 protective factors (OR < 1). Carbapenem use (OR = 4.71, 95% CI = 3.54 to 6.26) and cephalosporin use (OR = 4.49, 95% CI = 2.42 to 8.33) generated the highest pooled ORs. Both publication bias indicators showed a significant result for the risk factors carbapenem use, cephalosporin use, and glycopeptide use.

View this table:
  • View inline
  • View popup
TABLE 3

Random-effects meta-analyses of antibiotic exposure and other risk factors and/or protective factors for acquisition of CREa

FIG 2
  • Open in new tab
  • Download powerpoint
FIG 2

Forest plots of random-effects meta-analyses of antibiotic exposure as a risk factor and/or protective factor for the acquisition of carbapenem-resistant Enterobacteriaceae. (A) Carbapenem use; (B) cephalosporin use; (C) quinolone use; (D) β-lactam use; (E) glycopeptide use. *, nonsignificant confidence interval (Orsi et al. were contacted multiple times to receive the correct numbers; unfortunately, the authors did not respond).

In total, 26 additional meta-analyses were performed to assess the effect of the Enterobacteriaceae species studied, ICU study setting, the carbapenem resistance mechanism involved, and the study quality on the overall risk estimates (see File S4 in the supplemental material). In the additional meta-analyses, all risk factors remained significantly associated with CRE acquisition (pooled OR > 1).

Other risk factors for CRE acquisition.Other risk factors associated with the acquisition of carbapenem-resistant Enterobacteriaceae were divided into nine categories and are summarized in Table 4. The risk factor underlying disease or condition (n = 32 times identified) was the most frequently found. For eight out of nine categories, a meta-analysis including 59 studies was performed (Table 3 and Fig. 3). In the categories underlying disease or condition and CRE exposure, one study was excluded because it reported a hazard ratio instead of an odds ratio. In the categories exposure to hospital care and mechanical ventilation, one study was excluded because it reported relative risk instead of an odds ratio.

View this table:
  • View inline
  • View popup
TABLE 4

Other risk factors associated with acquisition of CRE, based on multivariable analysisc

  • Open in new tab
  • Download powerpoint
  • Open in new tab
  • Download powerpoint
FIG 3

Forest plots of random-effects meta-analyses of other risk factors and/or protective factors for the acquisition of carbapenem-resistant Enterobacteriaceae. (A) Underlying disease or condition; (B) invasive procedures; (C) medical devices; (D) ICU admission; (E) demographic patient characteristics; (F) exposure to hospital care; (G) mechanical ventilation; (H) CRE exposure.

From the eight different random-effects meta-analyses, the highest pooled OR was found for medical devices (OR = 5.09, 95% CI = 3.38 to 7.67), followed by invasive procedures (OR = 4.67, 95% CI = 3.59 to 6.07) and ICU admission (OR = 4.62, 95% CI = 2.46 to 8.69). Both publication bias indicators showed a significant result for all risk factors, except underlying disease or condition and CRE exposure.

The effects of the different variables (e.g., the CRE species studied, ICU study setting, and the mechanisms of carbapenem resistance) were reviewed by performing 47 additional meta-analyses. Surprisingly, all risk factors showed a decreased (or equal) pooled OR when only studies in which carbapenemase production was shown were included, with the OR difference ranging from 0 to −1.29 (File S5, Fig. SC). The meta-analyses of the remaining studies that described another resistance mechanism (e.g., porin mutations) or that did not investigate the resistance mechanism involved showed a large increase in the reported pooled ORs for all tested risk factors, with the mean change being +2.89.

Effective infection prevention strategies.We identified 95 studies describing effective infection prevention strategies used to control the spread of carbapenem-resistant Enterobacteriaceae in a hospital setting. These were converted to the top 10 most successful intervention strategies (Table 5). The use of barrier and/or contact precautions was found to be the most successful intervention strategy (n = 71), followed by patient cohorting (n = 68) and active surveillance (n = 56). Control of antibiotic use was mentioned in only 17 studies and could be found in ninth place. Besides these 10 strategies, some other interventions were described in the literature, such as restricted/no admission to the affected wards (n = 9) and the use of chlorhexidine for patient disinfection (n = 9).

View this table:
  • View inline
  • View popup
TABLE 5

Top 10 strategies to control hospital outbreaks with CREa

Environmental sources and reservoirs.Twenty-seven studies provided information about the environmental sources and reservoirs identified within their hospitals. All hospital locations in which carbapenem-resistant Enterobacteriaceae were identified are summarized in Table 6. Contaminated sinks were the most frequently described (n = 10 studies), followed by patient beds (n = 6 studies) and mechanical ventilation equipment (n = 5 studies).

View this table:
  • View inline
  • View popup
TABLE 6

Identified environmental sources and reservoirs for CREb

DISCUSSION

Summary of evidence.In this systematic review, we identified 13 risk factors associated with the presence of carbapenem-resistant Enterobacteriaceae. These risk factors were, in order of those with the highest to those with the lowest pooled OR, (i) medical devices, (ii) carbapenem use, (iii) invasive procedures, (iv) ICU admission, (v) cephalosporin use, (vi) glycopeptide use, (vii) CRE exposure, (viii) underlying disease or condition, (ix) quinolone use, (x) β-lactam use, (xi) mechanical ventilation, (xii) demographic patient characteristics, and (xiii) exposure to hospital care (Table 3). Medical devices, antibiotic use, ICU admission, exposure to hospital care, and underlying diseases were also identified to be risk factors in systematic reviews regarding the acquisition of extended-spectrum β-lactamase (ESBL)-producing Klebsiella spp. (14) and carbapenem-resistant Pseudomonas aeruginosa (15).

Plasmids responsible for carbapenem resistance often carry additional genes conferring resistance to other antibiotics, such as fluoroquinolones and aminoglycosides. This can explain why the use of these antibiotic classes is found to be a risk factor for CRE acquisition. However, this explanation cannot be used for glycopeptide antibiotics. Wu et al. (16) and Jiao et al. (11) supposed that vancomycin treatment disrupts the intestinal microflora, promoting the colonization of Enterobacteriaceae. Glycopeptide use was also identified to be a risk factor for carbapenem-resistant P. aeruginosa (15, 17) and ESBL-producing bacteria (18) acquisition.

On the contrary, 4 out of 13 significant risk factors were also described to be protective against CRE acquisition by other authors: quinolone use (19), mechanical ventilation (20), cephalosporin use (21), and ICU admission (22). Kwak et al. speculated that fluoroquinolone use was found to be a protective factor because this antibiotic was often given as a substitute for carbapenem or cephalosporin antibiotics (19). Torres-Gonzalez et al. reported that ICU admission was protective against CRE acquisition. This observation could be explained by the fact that their CRE outbreak was initially detected in the ICU and a successful bundle of infection prevention measures was initiated in that area (22).

We also performed additional meta-analyses to estimate the influence of the following variables on the overall risk estimate: the Enterobacteriaceae species studied, the ICU study setting, the carbapenem resistance mechanism involved, and the study quality. The carbapenem resistance mechanism was found to have the highest influence on the risk estimates, especially in the meta-analyses of non-antibiotic-related risk factors for CRE acquisition (see File S4, Fig. SC, in the supplemental material). We observed that our risk factors showed a lower risk estimate only when studies in which carbapenemase-producing Enterobacteriaceae were described were included.

The most successful interventions to stop the spread of CRE were barrier/contact precautions, patient cohorting, and active surveillance. Our findings correspond to the guidelines presented by the Centers for Disease Control and Prevention (CDC), which mainly highlight active surveillance and contact precautions (23, 24). Surprisingly, antimicrobial stewardship was mentioned in only 17 out of 95 studies, although multiple antimicrobial classes were identified to be risk factors for CRE acquisition.

Only 27 out of 95 studies reported environmental sources or reservoirs for CRE within their hospitals (Table 6). This indicates that for many outbreaks the source or reservoir was not determined. Contaminated sinks were the most frequently described and correspond to the reservoirs identified for other nosocomial pathogens, such as carbapenem-resistant P. aeruginosa (15) and ESBL-producing Klebsiella spp. (14).

Strengths and limitations.A strength of our study was the inclusion of both Enterobacteriaceae that showed in vitro resistance to any carbapenem antibiotic and Enterobacteriaceae that were found to produce carbapenemase enzymes. This is important because carbapenemase production does not always confer high-level carbapenem resistance and therefore leads to false-negative results when only phenotypic tests are used to identify carbapenem-resistant Enterobacteriaceae (25). This review included only two studies in which carbapenemase-producing but carbapenem-sensitive and -resistant isolates were studied. However, the mechanism of resistance does influence transmission and, thus, epidemiology, as we showed different risk estimates, especially for the non-antibiotic-related risk factors, when each mechanism was analyzed. With the knowledge that we have up to now, we cannot explain this difference. As we included all kinds of mechanisms, this can also be seen as a limitation of the study.

The study also has some limitations; the first is the large heterogeneity of all studies included. Studies with different target populations, for example, neonates, adults, or transplant patients, were selected. In addition, different microbiological methods were used to identify the CRE isolates, different Enterobacteriaceae species were included, and different prevention strategies were installed. To limit the influence of the study heterogeneity, the random-effects model of DerSimonian and Laird (26) was implemented in the meta-analyses, and different subgroup analyses were performed.

Second, we included both studies reporting CRE colonization and studies reporting CRE infections in hospitalized patients. However, not all studies describing risk factors for CRE infection checked whether the patients were previously colonized with CRE or not. Likewise, they did not check whether patients from the control group were colonized with CRE before or during the infection. For these studies, we cannot rule out the possibility that their reported risk factors are not specific for CRE acquisition but are specific for progression to infection after CRE colonization.

Third, both publication bias indicators showed a significant result for several risk factors (9/13), indicating that publication bias was present. To limit publication bias, the studies that we included were not limited by language, date of publication, country of publication, carbapenem resistance mechanism, study design, or patient characteristics.

Conclusions and implications.This systematic review shows that not only antibiotic use but also many other risk factors are associated with CRE acquisition. The most significant risk estimate found in our meta-analyses was found for the risk factor medical devices, followed by carbapenem use. We identified risk factors related to the emergence/selection of CRE, but also risk factors related to the transmission of the CRE isolates. To prevent or to control hospital outbreaks, bundled interventions are needed. These interventions need to focus on both antibiotic stewardship and reduction of the use of indwelling devices to reduce the spread of CRE within the hospital. Indwelling medical devices do present a very high risk for the acquisition of CRE but are also a risk for the acquisition of infections in general. Therefore, a very useful prevention measure is the active decrease in the rate of use (deimplementation) of medical devices.

MATERIALS AND METHODS

This systematic review and meta-analyses followed the guidelines presented in the PRISMA statement (see File S1 in the supplemental material) (27). Protocol details were submitted to the PROSPERO International Prospective Register of Systematic Reviews (registration number CRD42017055455).

Study selection.Articles related to our research questions were identified through a search of the literature in multiple databases (until 11 January 2017): Embase, Medline Ovid, Cochrane, Web of Science, and Google Scholar (File S2). The search was not limited by language, date of publication, country of publication, carbapenem resistance mechanism, study design, or patient characteristics.

We used the following inclusion criteria during the study selection: (i) studies reporting risk factors for the acquisition of CRE, (ii) studies mentioning environmental sources/reservoirs for CRE, and (iii) studies describing effective infection prevention strategies to halt nosocomial outbreaks. Risk factors for acquisition could include risk factors for infection as well as risk factors for colonization with CRE. Enterobacteriaceae were considered resistant to carbapenem antibiotics when this was shown using phenotypic tests and/or when carbapenemase genes could be identified.

We excluded studies related to nonhuman infections, nonhospital studies, conference abstracts, letters to the editor, commentaries, weekly reports, and editorials. Studies were also excluded if patients with CRE infections were compared to patients who were colonized with CRE. First, the titles and abstracts of all retrieved citations were screened independently by K.V.L. and A.F.V. After this screening, K.V.L. and A.F.V. performed a second screening based on the full text.

Data extraction.We designed a data abstraction form, pilot tested it on three randomly selected articles, and redefined it according to the outcomes. The following data were extracted: first author, journal, year published, country, study design, study setting, patient characteristics, the carbapenem-resistant microorganism(s) studied, risk factors for acquisition/mortality, site of colonization/infection, protective factors for acquisition/mortality, potential reservoirs for CRE, and effective infection prevention strategies for CRE. The extracted data were sent to the corresponding author of the original article to verify the extracted data and to gain additional information if relevant. When we did not receive any response after the given deadline (i.e., 2 weeks), a reminder was sent. If no response was received and crucial information was missing, the study was excluded.

Data analysis. (i) Risk factors for CRE acquisition.All risk factors associated with the acquisition of CRE for which an odds ratio (OR) with the 95% confidence interval (CI) was reported were divided into two groups: those related to antibiotic exposure and other. Risk factors that were reported as a hazard ratio or relative risk were not included in a random-effects meta-analysis and were therefore only summarized.

The first category, related to antibiotic exposure, was further divided into the following nine categories: (i) carbapenem use, (ii) cephalosporin use, (iii) quinolone use, (iv) use of other β-lactam antibiotics or β-lactam use in general, (v) glycopeptide use, (vi) antibiotic exposure (in general), (vii) number of antibiotics administered, (viii) duration of exposure, and (ix) other. The second category, other, was also divided into nine categories, as follows: (i) underlying disease or condition, (ii) invasive procedures, (iii) medical devices, (iv) ICU admission, (v) exposure to hospital care, (vi) demographic patient characteristics, (vii) mechanical ventilation, (viii) CRE exposure, and (ix) other.

Studies reporting protective factors for the acquisition of CRE were summarized and included in a meta-analysis if they could be categorized into one of the previously described categories.

(ii) Meta-analysis.The meta-analyses were performed using StatsDirect statistical software (Altrincham, United Kingdom), including the random-effects model of DerSimonian and Laird (26). A P value of <0.05 was considered statistically significant. A meta-analysis was performed only if ≥3 studies reported the same risk factor and if the risk factors within the category were not too diverse. Publication bias was examined visually with the use of funnel plots and assessed with the indicators of Egger et al. (28) and Begg and Mazumdar (29). When both indications showed a significant result, it was assumed that publication bias was present.

Eight additional meta-analyses were performed for each risk factor category: 1a, studies including only K. pneumoniae isolates; 1b, other studies; 2a, studies with an ICU setting; 2b, studies with a different study setting; 3a, studies describing only carbapenemase production as the carbapenem resistance mechanism; 3b, studies describing another resistance mechanism or not investigating the resistance mechanism involved; 4a, studies with a moderate/high study quality; and 4b, studies with a low study quality.

(iii) Infection prevention strategies and environmental sources/reservoirs.All effective infection prevention strategies mentioned in the included articles were categorized, and a top 10 was created on the basis of the number of studies that reported these infection prevention strategies. In addition, studies describing sources and/or reservoirs for CRE in a hospital setting were reviewed and summarized.

Study quality.A quality assessment was performed for all studies included in a meta-analysis using the strengthening the reporting of observational studies in epidemiology (STROBE) guideline (File S3) (30). Studies with a score of ≤15 points were considered to be of relatively low methodological quality, studies receiving a quality score of 16, 17, or 18 points were rated to be of moderate quality, and studies with a score of ≥19 points were considered to have a relatively high study quality. Study quality was not considered an exclusion criterion.

ACKNOWLEDGMENTS

We thank the management of Master Infection and Immunity (Erasmus MC) for its support during the research process. We also thank Wichor M. Bramer for devising and executing our systematic literature search. In addition, we thank the corresponding authors of the studies evaluated for providing feedback on our extracted data.

This research received no specific grant from any funding agency.

We report no conflict of interest relevant to this study.

M.C.V. and A.F.V. designed the study. A.F.V. and K.V.L. conducted the literature search and selected the studies. K.V.L. performed the data extraction. M.C.V., K.V.L., and A.F.V. performed the data interpretation and analysis. K.V.L., M.C.V., and A.F.V. wrote the manuscript.

FOOTNOTES

    • Received 22 August 2017.
    • Returned for modification 30 August 2017.
    • Accepted 29 September 2017.
    • Accepted manuscript posted online 16 October 2017.
  • Supplemental material for this article may be found at https://doi.org/10.1128/AAC.01730-17.

  • Copyright © 2017 American Society for Microbiology.

All Rights Reserved.

REFERENCES

  1. 1.↵
    1. Nordmann P,
    2. Naas T,
    3. Poirel L
    . 2011. Global spread of carbapenemase producing Enterobacteriaceae. Emerg Infect Dis 17:1791–1798. doi:10.3201/eid1710.110655.
    OpenUrlCrossRefPubMed
  2. 2.↵
    1. Schwaber MJ,
    2. Carmeli Y
    . 2008. Carbapenem-resistant Enterobacteriaceae: a potential threat. JAMA 300:2911–2913. doi:10.1001/jama.2008.896.
    OpenUrlCrossRefPubMedWeb of Science
  3. 3.↵
    1. Baran I,
    2. Aksu N
    . 2016. Phenotypic and genotypic characteristics of carbapenem-resistant Enterobacteriaceae in a tertiary-level reference hospital in Turkey. Ann Clin Microbiol Antimicrob 15:20. doi:10.1186/s12941-016-0136-2.
    OpenUrlCrossRef
  4. 4.↵
    1. Barbarini D,
    2. Russello G,
    3. Brovarone F,
    4. Capatti C,
    5. Colla R,
    6. Perilli M,
    7. Moro ML,
    8. Carretto E
    . 2015. Evaluation of carbapenem-resistant Enterobacteriaceae in an Italian setting: report from the trench. Infect Genet Evol 30:8–14. doi:10.1016/j.meegid.2014.11.025.
    OpenUrlCrossRef
  5. 5.↵
    1. Papp-Wallace KM,
    2. Endimiani A,
    3. Taracila MA,
    4. Bonomo RA
    . 2011. Carbapenems: past, present, and future. Antimicrob Agents Chemother 55:4943–4960. doi:10.1128/AAC.00296-11.
    OpenUrlAbstract/FREE Full Text
  6. 6.↵
    1. Temkin E,
    2. Adler A,
    3. Lerner A
    . 2014. Carbapenem-resistant Enterobacteriaceae: biology, epidemiology, and management. Ann N Y Acad Sci 1323:22–42. doi:10.1111/nyas.12537.
    OpenUrlCrossRefPubMed
  7. 7.↵
    1. Wang X,
    2. Chen G,
    3. Wu X,
    4. Wang L,
    5. Cai J,
    6. Chan EW,
    7. Chen S,
    8. Zhang R
    . 2015. Increased prevalence of carbapenem resistant Enterobacteriaceae in hospital setting due to cross-species transmission of the blaNDM-1 element and clonal spread of progenitor resistant strains. Front Microbiol 6:595. doi:10.3389/fmicb.2015.00595.
    OpenUrlCrossRefPubMed
  8. 8.↵
    1. Wang JT,
    2. Wu UI,
    3. Lauderdale TLY,
    4. Chen MC,
    5. Li SY,
    6. Hsu LY,
    7. Chang SC
    . 2015. Carbapenem-nonsusceptible Enterobacteriaceae in Taiwan. PLoS One 10:e0121668. doi:10.1371/journal.pone.0121668.
    OpenUrlCrossRefPubMed
  9. 9.↵
    1. Freire MP,
    2. Abdala E,
    3. Moura ML,
    4. de Paula FJ,
    5. Spadão F,
    6. Caiaffa-Filho HH,
    7. David-Neto E,
    8. Nahas WC,
    9. Pierrotti LC
    . 2015. Risk factors and outcome of infections with Klebsiella pneumoniae carbapenemase-producing K. pneumoniae in kidney transplant recipients. Infection 43:315–323. doi:10.1007/s15010-015-0743-4.
    OpenUrlCrossRefPubMed
  10. 10.↵
    1. Freire MP,
    2. Pierrotti LC,
    3. Filho HH,
    4. Ibrahim KY,
    5. Magri AS,
    6. Bonazzi PR,
    7. Hajar L,
    8. Diz MP,
    9. Pereira J,
    10. Hoff PM,
    11. Abdala E
    . 2015. Infection with Klebsiella pneumoniae carbapenemase (KPC)-producing Klebsiella pneumoniae in cancer patients. Eur J Clin Microbiol Infect Dis 34:277–286. doi:10.1007/s10096-014-2233-5.
    OpenUrlCrossRef
  11. 11.↵
    1. Jiao Y,
    2. Qin Y,
    3. Liu J,
    4. Li Q,
    5. Dong Y,
    6. Shang Y,
    7. Huang Y,
    8. Liu R
    . 2015. Risk factors for carbapenem-resistant Klebsiella pneumoniae infection/colonization and predictors of mortality: a retrospective study. Pathog Global Health 109:68–74. doi:10.1179/2047773215Y.0000000004.
    OpenUrlCrossRefPubMed
  12. 12.↵
    1. Patel G,
    2. Huprikar S,
    3. Factor SH,
    4. Jenkins SG,
    5. Calfee DP
    . 2008. Outcomes of carbapenem-resistant Klebsiella pneumoniae infection and the impact of antimicrobial and adjunctive therapies. Infect Control Hosp Epidemiol 29:1099–1106. doi:10.1086/592412.
    OpenUrlCrossRefPubMedWeb of Science
  13. 13.↵
    1. Wang Q,
    2. Zhang Y,
    3. Yao X,
    4. Xian H,
    5. Liu Y,
    6. Li H,
    7. Chen H,
    8. Wang X,
    9. Wang R,
    10. Zhao C,
    11. Cao B,
    12. Wang H
    . 2016. Risk factors and clinical outcomes for carbapenem-resistant Enterobacteriaceae nosocomial infections. Eur J Clin Microbiol Infect Dis 35:1679–1689. doi:10.1007/s10096-016-2710-0.
    OpenUrlCrossRef
  14. 14.↵
    1. Hendrik TC,
    2. Voor in ‘t holt AF,
    3. Vos MC
    . 2015. Clinical and molecular epidemiology of extended-spectrum beta-lactamase-producing Klebsiella spp.: a systematic review and meta-analyses. PLoS One 10:e0140754. doi:10.1371/journal.pone.0140754.
    OpenUrlCrossRef
  15. 15.↵
    1. Voor in ‘t holt AF,
    2. Severin JA,
    3. Lesaffre EMEH,
    4. Vos MC
    . 2014. A systematic review and meta-analyses show that carbapenem use and medical devices are the leading risk factors for carbapenem-resistant Pseudomonas aeruginosa. Antimicrob Agents Chemother 58:2626–2637. doi:10.1128/AAC.01758-13.
    OpenUrlAbstract/FREE Full Text
  16. 16.↵
    1. Wu D,
    2. Cai J,
    3. Liu J
    . 2011. Risk factors for the acquisition of nosocomial infection with carbapenem-resistant Klebsiella pneumoniae. South Med J 104:106–110. doi:10.1097/SMJ.0b013e318206063d.
    OpenUrlCrossRefPubMed
  17. 17.↵
    1. Harris AD,
    2. Smith D,
    3. Johnson JA,
    4. Bradham DD,
    5. Roghmann MC
    . 2002. Risk factors for imipenem-resistant Pseudomonas aeruginosa among hospitalized patients. Clin Infect Dis 34:340–345. doi:10.1086/338237.
    OpenUrlCrossRefPubMedWeb of Science
  18. 18.↵
    1. Harris AD,
    2. McGregor JC,
    3. Johnson JA,
    4. Strauss SM,
    5. Moore AC,
    6. Standiford HC,
    7. Hebden JN,
    8. Morris JG, Jr
    . 2007. Risk factors for colonization with extended-spectrum β-lactamase-producing bacteria and intensive care unit admission. Emerg Infect Dis 13:1144–1149. doi:10.3201/eid1308.070071.
    OpenUrlCrossRefPubMedWeb of Science
  19. 19.↵
    1. Kwak YG,
    2. Choi SH,
    3. Choo EJ,
    4. Chung JW,
    5. Jeong JY,
    6. Kim NJ,
    7. Woo JH,
    8. Ryu J,
    9. Kim YS
    . 2005. Risk factors for the acquisition of carbapenem-resistant Klebsiella pneumoniae among hospitalized patients. Microb Drug Resist 11:165–169. doi:10.1089/mdr.2005.11.165.
    OpenUrlCrossRefPubMedWeb of Science
  20. 20.↵
    1. Mittal G,
    2. Gaind R,
    3. Kumar D,
    4. Kaushik G,
    5. Gupta KB,
    6. Verma PK,
    7. Deb M
    . 2016. Risk factors for fecal carriage of carbapenemase producing Enterobacteriaceae among intensive care unit patients from a tertiary care center in India. BMC Microbiol 16:138. doi:10.1186/s12866-016-0763-y.
    OpenUrlCrossRef
  21. 21.↵
    1. Schwartz-Neiderman A,
    2. Braun T,
    3. Fallach N,
    4. Schwartz D,
    5. Carmeli Y,
    6. Schechner V
    . 2016. Risk factors for carbapenemase-producing carbapenem-resistant Enterobacteriaceae (CP-CRE) acquisition among contacts of newly diagnosed CP-CRE patients. Infect Control Hosp Epidemiol 37:1219–1225. doi:10.1017/ice.2016.153.
    OpenUrlCrossRef
  22. 22.↵
    1. Torres-Gonzalez P,
    2. Cervera-Hernandez ME,
    3. Niembro-Ortega MD,
    4. Leal-Vega F,
    5. Cruz-Hervert LP,
    6. García-García L,
    7. Galindo-Fraga A,
    8. Martinez-Gamboa A,
    9. Bobadilla-Del Valle M,
    10. Sifuentes-Osornio J,
    11. Ponce-De-Leon A
    . 2015. Factors associated to prevalence and incidence of carbapenem-resistant Enterobacteriaceae fecal carriage: a cohort study in a Mexican tertiary care hospital. PLoS One 10:e0139883. doi:10.1371/journal.pone.0139883.
    OpenUrlCrossRefPubMed
  23. 23.↵
    Centers for Disease Control and Prevention. 2009. Guidance for control of infections with carbapenem-resistant or carbapenemase-producing Enterobacteriaceae in acute care facilities. MMWR Morb Mortal Wkly Rep 58:256–260.
    OpenUrlPubMed
  24. 24.↵
    1. Gupta N,
    2. Limbago BM,
    3. Patel JB,
    4. Kallen AJ
    . 2011. Carbapenem-resistant Enterobacteriaceae: epidemiology and prevention. Clin Infect Dis 53:60–67. doi:10.1093/cid/cir202.
    OpenUrlCrossRefPubMed
  25. 25.↵
    1. Anderson KF,
    2. Lonsway DR,
    3. Rasheed JK,
    4. Biddle J,
    5. Jensen B,
    6. McDougal LK,
    7. Carey RB,
    8. Thompson A,
    9. Stocker S,
    10. Limbago B,
    11. Patel JB
    . 2007. Evaluation of methods to identify the Klebsiella pneumoniae carbapenemase in Enterobacteriaceae. J Clin Microbiol 45:2723–2725. doi:10.1128/JCM.00015-07.
    OpenUrlAbstract/FREE Full Text
  26. 26.↵
    1. DerSimonian R,
    2. Laird N
    . 2015. Meta-analysis in clinical trials revisited. Contemp Clin Trials 45:139–145. doi:10.1016/j.cct.2015.09.002.
    OpenUrlCrossRefPubMed
  27. 27.↵
    1. Liberati A,
    2. Altman DG,
    3. Tetzlaff J,
    4. Mulrow C,
    5. Gotzsche PC,
    6. Ioannidis JP,
    7. Clarke M,
    8. Devereaux PJ,
    9. Kleijnen J,
    10. Moher D
    . 2009. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate healthcare interventions: explanation and elaboration. BMJ 339:b2700. doi:10.1136/bmj.b2700.
    OpenUrlAbstract/FREE Full Text
  28. 28.↵
    1. Egger M,
    2. Davey Smith G,
    3. Schneider M,
    4. Minder C
    . 1997. Bias in meta-analysis detected by a simple, graphical test. BMJ 315:629–634. doi:10.1136/bmj.315.7109.629.
    OpenUrlAbstract/FREE Full Text
  29. 29.↵
    1. Begg CB,
    2. Mazumdar M
    . 1994. Operating characteristics of a rank correlation test for publication bias. Biometrics 50:1088–1101. doi:10.2307/2533446.
    OpenUrlCrossRefPubMedWeb of Science
  30. 30.↵
    1. von Elm E,
    2. Altman DG,
    3. Egger M,
    4. Pocock SJ,
    5. Gotzsche PC,
    6. Vandenbroucke JP, STROBE Initiative
    . 2007. Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) statement: guidelines for reporting observational studies. BMJ 335:806–808. doi:10.1136/bmj.39335.541782.AD.
    OpenUrlFREE Full Text
  31. 31.
    1. Akgul F,
    2. Bozkurt I,
    3. Sunbul M,
    4. Esen S,
    5. Leblebicioglu H
    . 2016. Risk factors and mortality in the carbapenem-resistant Klebsiella pneumoniae infection: case control study. Pathog Global Health 110:321–325. doi:10.1080/20477724.2016.1254976.
    OpenUrlCrossRef
  32. 32.
    1. Garbati MA,
    2. Sakkijha H,
    3. Abushaheen A
    . 2016. Infections due to carbapenem resistant Enterobacteriaceae among Saudi Arabian hospitalized patients: a matched case-control study. Biomed Res Int 2016:3961684. doi:10.1155/2016/3961684.
    OpenUrlCrossRef
  33. 33.
    1. Gasink LB,
    2. Edelstein PH,
    3. Lautenbach E,
    4. Synnestvedt M,
    5. Fishman NO
    . 2009. Risk factors and clinical impact of Klebsiella pneumoniae carbapenemase-producing K. pneumoniae. Infect Control Hosp Epidemiol 30:1180–1185. doi:10.1086/648451.
    OpenUrlCrossRefPubMedWeb of Science
  34. 34.
    1. Giuffrè M,
    2. Bonura C,
    3. Geraci DM,
    4. Saporito L,
    5. Catalano R,
    6. Di Noto S,
    7. Nociforo F,
    8. Corsello G,
    9. Mammina C
    . 2013. Successful control of an outbreak of colonization by Klebsiella pneumoniae carbapenemase-producing K. pneumoniae sequence type 258 in a neonatal intensive care unit, Italy. J Hosp Infect 85:233–236. doi:10.1016/j.jhin.2013.08.004.
    OpenUrlCrossRefPubMed
  35. 35.
    1. Madueño A,
    2. Gonzalez Garcia J,
    3. Ramos MJ,
    4. Pedroso Y,
    5. Diaz Z,
    6. Oteo J,
    7. Lecuona M
    . 2017. Risk factors associated with carbapenemase-producing Klebsiella pneumoniae fecal carriage: a case-control study in a Spanish tertiary care hospital. Am J Infect Control 45:77–79. doi:10.1016/j.ajic.2016.06.024.
    OpenUrlCrossRef
  36. 36.
    1. Ahn JY,
    2. Song JE,
    3. Kim MH,
    4. Choi H,
    5. Kim JK,
    6. Ann HW,
    7. Kim JH,
    8. Jeon Y,
    9. Jeong SJ,
    10. Kim SB,
    11. Ku NS,
    12. Han SH,
    13. Song YG,
    14. Yong D,
    15. Lee K,
    16. Kim JM,
    17. Choi JY
    . 2014. Risk factors for the acquisition of carbapenem-resistant Escherichia coli at a tertiary care center in South Korea: a matched case-control study. Am J Infect Control 42:621–625. doi:10.1016/j.ajic.2014.02.024.
    OpenUrlCrossRef
  37. 37.
    1. Chang HJ,
    2. Hsu PC,
    3. Yang CC,
    4. Kuo AJ,
    5. Chia JH,
    6. Wu TL,
    7. Lee MH
    . 2011. Risk factors and outcomes of carbapenem-nonsusceptible Escherichia coli bacteremia: a matched case-control study. J Microbiol Immunol Infect 44:125–130. doi:10.1016/j.jmii.2010.06.001.
    OpenUrlCrossRefPubMed
  38. 38.
    1. Cheng VCC,
    2. Chen JHK,
    3. So SYC,
    4. Wong SCY,
    5. Chau PH,
    6. Wong LMW,
    7. Ching RHC,
    8. Ng MML,
    9. Lee WM,
    10. Hung IFN,
    11. Ho PL,
    12. Yuen KY
    . 2016. A novel risk factor associated with colonization by carbapenemase-producing Enterobacteriaceae: use of proton pump inhibitors in addition to antimicrobial treatment. Infect Control Hosp Epidemiol 37:1418–1425. doi:10.1017/ice.2016.202.
    OpenUrlCrossRef
  39. 39.
    1. Daikos GL,
    2. Vryonis E,
    3. Psichogiou M,
    4. Tzouvelekis LS,
    5. Liatis S,
    6. Petrikkos P,
    7. Kosmidis C,
    8. Tassios PT,
    9. Bamias G,
    10. Skoutelis A
    . 2010. Risk factors for bloodstream infection with Klebsiella pneumoniae producing VIM-1 metallo-β-lactamase. J Antimicrob Chemother 65:784–788. doi:10.1093/jac/dkq005.
    OpenUrlCrossRefPubMedWeb of Science
  40. 40.
    1. Dizbay M,
    2. Tunccan OG,
    3. Karasahin O,
    4. Aktas F
    . 2014. Emergence of carbapenem-resistant Klebsiella spp. infections in a Turkish university hospital: epidemiology and risk factors. J Infect Dev Ctries 8:44–49. doi:10.3855/jidc.3091.
    OpenUrlCrossRef
  41. 41.
    1. Gagliotti C,
    2. Giordani S,
    3. Ciccarese V,
    4. Barozzi A,
    5. Giovinazzi A,
    6. Pietrantonio AM,
    7. Moro ML,
    8. Pinelli G,
    9. Sarti M
    . 2014. Risk factors for colonization with carbapenemase-producing Klebsiella pneumoniae in hospital: a matched case-control study. Am J Infect Control 42:1006–1008. doi:10.1016/j.ajic.2014.05.028.
    OpenUrlCrossRefPubMed
  42. 42.
    1. Hu Y,
    2. Ping Y,
    3. Li L,
    4. Xu H,
    5. Yan X,
    6. Dai H
    . 2016. A retrospective study of risk factors for carbapenem-resistant Klebsiella pneumoniae acquisition among ICU patients. J Infect Dev Ctries 10:208–213. doi:10.3855/jidc.6697.
    OpenUrlCrossRef
  43. 43.
    1. Hussein K,
    2. Sprecher H,
    3. Mashiach T,
    4. Oren I,
    5. Kassis I,
    6. Finkelstein R
    . 2009. Carbapenem resistance among Klebsiella pneumoniae isolates: risk factors, molecular characteristics, and susceptibility patterns. Infect Control Hosp Epidemiol 30:666–671. doi:10.1086/598244.
    OpenUrlCrossRefPubMedWeb of Science
  44. 44.
    1. Jeon MH,
    2. Choi SH,
    3. Kwak YG,
    4. Chung JW,
    5. Lee SO,
    6. Jeong JY,
    7. Woo JH,
    8. Kim YS
    . 2008. Risk factors for the acquisition of carbapenem-resistant Escherichia coli among hospitalized patients. Diagn Microbiol Infect Dis 62:402–406. doi:10.1016/j.diagmicrobio.2008.08.014.
    OpenUrlCrossRefPubMedWeb of Science
  45. 45.
    1. Karaaslan A,
    2. Soysal A,
    3. Altinkanat Gelmez G,
    4. Kepenekli Kadayifci E,
    5. Söyletir G,
    6. Bakir M
    . 2016. Molecular characterization and risk factors for carbapenem-resistant Gram-negative bacilli colonization in children: emergence of NDM-producing Acinetobacter baumannii in a newborn intensive care unit in Turkey. J Hosp Infect 92:67–72. doi:10.1016/j.jhin.2015.09.011.
    OpenUrlCrossRef
  46. 46.
    1. Maldonado N,
    2. Castro B,
    3. Berrio I,
    4. Manjarres M,
    5. Robledo C,
    6. Robledo J
    . 2015. Ertapenem resistance in 2 tertiary-care hospitals: microbiology, epidemiology, and risk factors. Enferm Infecc Microbiol Clin 35:511–515. doi:10.1016/j.eimc.2015.11.009.
    OpenUrlCrossRef
  47. 47.
    1. Mills JP,
    2. Talati NJ,
    3. Alby K,
    4. Han JH
    . 2016. The epidemiology of carbapenem-resistant Klebsiella pneumoniae colonization and infection among long-term acute care hospital residents. Infect Control Hosp Epidemiol 37:55–60. doi:10.1017/ice.2015.254.
    OpenUrlCrossRef
  48. 48.
    1. Orsi GB,
    2. Bencardino A,
    3. Vena A,
    4. Carattoli A,
    5. Venditti C,
    6. Falcone M,
    7. Giordano A,
    8. Venditti M
    . 2013. Patient risk factors for outer membrane permeability and KPC-producing carbapenem-resistant Klebsiella pneumoniae isolation: results of a double case-control study. Infection 41:61–67. doi:10.1007/s15010-012-0354-2.
    OpenUrlCrossRefPubMed
  49. 49.
    1. Papadimitriou-Olivgeris M,
    2. Marangos M,
    3. Fligou F,
    4. Christofidou M,
    5. Bartzavali C,
    6. Anastassiou ED,
    7. Filos KS
    . 2012. Risk factors for KPC-producing Klebsiella pneumoniae enteric colonization upon ICU admission. J Antimicrob Chemother 67:2976–2981. doi:10.1093/jac/dks316.
    OpenUrlCrossRefPubMed
  50. 50.
    1. Papadimitriou-Olivgeris M,
    2. Spiliopoulou I,
    3. Christofidou M,
    4. Logothetis D,
    5. Manolopoulou P,
    6. Dodou V,
    7. Fligou F,
    8. Marangos M,
    9. Anastassiou ED
    . 2015. Co-colonization by multidrug-resistant bacteria in two Greek intensive care units. Eur J Clin Microbiol Infect Dis 34:1947–1955. doi:10.1007/s10096-015-2436-4.
    OpenUrlCrossRef
  51. 51.
    1. Petrikkos P,
    2. Kosmidis C,
    3. Psichogiou M,
    4. Tassios P,
    5. Tzouvelekis L,
    6. Avlamis A,
    7. Stefanou I,
    8. Platsouka E,
    9. Paniara O,
    10. Xanthaki A,
    11. Toutouza M,
    12. Vrionis E,
    13. Skoutelis A,
    14. Georgousi K,
    15. Bamia C,
    16. Petrikkos G,
    17. Daikos GL
    . 2009. Prospective study of Klebsiella pneumoniae bacteremia: risk factors and clinical significance of type VIM-1 metallo-beta-lactamases. Arch Hell Med 26:374–383.
    OpenUrl
  52. 52.
    1. Satlin MJ,
    2. Cohen N,
    3. Ma KC,
    4. Gedrimaite Z,
    5. Soave R,
    6. Askin G,
    7. Chen L,
    8. Kreiswirth BN,
    9. Walsh TJ,
    10. Seo SK
    . 2016. Bacteremia due to carbapenem-resistant Enterobacteriaceae in neutropenic patients with hematologic malignancies. J Infect 73:336–345. doi:10.1016/j.jinf.2016.07.002.
    OpenUrlCrossRef
  53. 53.
    1. Ma MS,
    2. Wang DH,
    3. Sun XJ,
    4. Li ZH,
    5. Wang C
    . 2014. Risk factors for Klebsiella pneumoniae carbapenemase-producing Klebsiella pneumoniae colonization in neonates. Chin J Contemp Pediatr 16:970–974. (In Chinese.)
    OpenUrl
  54. 54.
    1. Candevir Ulu A,
    2. Kurtaran B,
    3. Inal AS,
    4. Kömür S,
    5. Kibar F,
    6. Çiçekdemir HY,
    7. Bozkurt S,
    8. Gürel D,
    9. Kılıç F,
    10. Yaman A,
    11. Aksu HSZ,
    12. Ta̧ova Y
    . 2015. Risk factors of carbapenem-resistant Klebsiella pneumoniae infection: a serious threat in ICUs. Med Sci Monit 21:219–224. doi:10.12659/MSM.892516.
    OpenUrlCrossRef
  55. 55.
    1. Hayakawa K,
    2. Miyoshi-Akiyama T,
    3. Kirikae T,
    4. Nagamatsu M,
    5. Shimada K,
    6. Mezaki K,
    7. Sugiki Y,
    8. Kuroda E,
    9. Kubota S,
    10. Takeshita N,
    11. Kutsuna S,
    12. Tojo M,
    13. Ohmagari N
    . 2014. Molecular and epidemiological characterization of IMP-type metallo-β-lactamase-producing Enterobacter cloacae in a large tertiary care hospital in Japan. Antimicrob Agents Chemother 58:3441–3450. doi:10.1128/AAC.02652-13.
    OpenUrlAbstract/FREE Full Text
  56. 56.
    1. Liu SW,
    2. Chang HJ,
    3. Chia JH,
    4. Kuo AJ,
    5. Wu TL,
    6. Lee MH
    . 2012. Outcomes and characteristics of ertapenem-nonsusceptible Klebsiella pneumoniae bacteremia at a university hospital in northern Taiwan: a matched case-control study. J Microbiol Immunol Infect 45:113–119. doi:10.1016/j.jmii.2011.09.026.
    OpenUrlCrossRefPubMed
  57. 57.
    1. Maseda E,
    2. Salgado P,
    3. Anillo V,
    4. Ruiz-Carrascoso G,
    5. Gómez-Gil R,
    6. Martín-Funke C,
    7. Gimenez MJ,
    8. Granizo JJ,
    9. Aguilar L,
    10. Gilsanz F
    . 2016. Risk factors for colonization by carbapenemase-producing enterobacteria at admission to a surgical ICU: a retrospective study. Enferm Infecc Microbiol Clin 35:333–337.
    OpenUrl
  58. 58.
    1. Sánchez-Romero I,
    2. Asensio Á,
    3. Oteo J,
    4. Muñoz-Algarra M,
    5. Isidoro B,
    6. Vindel A,
    7. Álvarez-Avello J,
    8. Balandín-Moreno B,
    9. Cuevas O,
    10. Fernández-Romero S,
    11. Azañedo L,
    12. Sáez D,
    13. Campos J
    . 2012. Nosocomial outbreak of VIM-1-producing Klebsiella pneumoniae isolates of multilocus sequence type 15: molecular basis, clinical risk factors, and outcome. Antimicrob Agents Chemother 56:420–427. doi:10.1128/AAC.05036-11.
    OpenUrlAbstract/FREE Full Text
  59. 59.
    1. Dautzenberg MJD,
    2. Ossewaarde JM,
    3. de Greeff SC,
    4. Troelstra A,
    5. Bonten MJM
    . 2016. Risk factors for the acquisition of OXA-48-producing Enterobacteriaceae in a hospital outbreak setting: a matched case-control study. J Antimicrob Chemother 71:2273–2279. doi:10.1093/jac/dkw119.
    OpenUrlCrossRefPubMed
  60. 60.
    1. Falagas ME,
    2. Rafailidis PI,
    3. Kofteridis D,
    4. Virtzili S,
    5. Chelvatzoglou FC,
    6. Papaioannou V,
    7. Maraki S,
    8. Samonis G,
    9. Michalopoulos A
    . 2007. Risk factors of carbapenem-resistant Klebsiella pneumoniae infections: a matched case-control study. J Antimicrob Chemother 60:1124–1130. doi:10.1093/jac/dkm356.
    OpenUrlCrossRefPubMedWeb of Science
  61. 61.
    1. Schwaber MJ,
    2. Klarfeld-Lidji S,
    3. Navon-Venezia S,
    4. Schwartz D,
    5. Leavitt A,
    6. Carmeli Y
    . 2008. Predictors of carbapenem-resistant Klebsiella pneumoniae acquisition among hospitalized adults and effect of acquisition on mortality. Antimicrob Agents Chemother 52:1028–1033. doi:10.1128/AAC.01020-07.
    OpenUrlAbstract/FREE Full Text
  62. 62.
    1. Teo J,
    2. Cai Y,
    3. Tang S,
    4. Lee W,
    5. Tan TY,
    6. Tan TT,
    7. Kwa ALH
    . 2012. Risk factors, molecular epidemiology and outcomes of ertapenem-resistant, carbapenem-susceptible Enterobacteriaceae: a case-case-control study. PLoS One 7:e34254. doi:10.1371/journal.pone.0034254.
    OpenUrlCrossRefPubMed
  63. 63.
    1. Tuon FF,
    2. Rocha JL,
    3. Toledo P,
    4. Arend LN,
    5. Dias CH,
    6. Leite TM,
    7. Penteado-Filho SR,
    8. Pilonetto M,
    9. Zavascki AP
    . 2012. Risk factors for KPC-producing Klebsiella pneumoniae bacteremia. Braz J Infect Dis 16:416–419. doi:10.1016/j.bjid.2012.08.006.
    OpenUrlCrossRefPubMed
  64. 64.
    1. Ben-David D,
    2. Masarwa S,
    3. Navon-Venezia S,
    4. Mishali H,
    5. Fridental I,
    6. Rubinovitch B,
    7. Smollan G,
    8. Carmeli Y,
    9. Schwaber MJ
    . 2011. Carbapenem-resistant Klebsiella pneumoniae in post-acute-care facilities in Israel. Infect Control Hosp Epidemiol 32:845–853. doi:10.1086/661279.
    OpenUrlCrossRefPubMed
  65. 65.
    1. Borer A,
    2. Saidel-Odes L,
    3. Eskira S,
    4. Nativ R,
    5. Riesenberg K,
    6. Livshiz-Riven I,
    7. Schlaeffer F,
    8. Sherf M,
    9. Peled N
    . 2012. Risk factors for developing clinical infection with carbapenem-resistant Klebsiella pneumoniae in hospital patients initially only colonized with carbapenem-resistant K. pneumoniae. Am J Infect Control 40:421–425. doi:10.1016/j.ajic.2011.05.022.
    OpenUrlCrossRefPubMedWeb of Science
  66. 66.
    1. Gallagher JC,
    2. Kuriakose S,
    3. Haynes K,
    4. Axelrod P
    . 2014. Case-case-control study of patients with carbapenem-resistant and third-generation-cephalosporin-resistant Klebsiella pneumoniae bloodstream infections. Antimicrob Agents Chemother 58:5732–5735. doi:10.1128/AAC.03564-14.
    OpenUrlAbstract/FREE Full Text
  67. 67.
    1. Marchaim D,
    2. Chopra T,
    3. Bhargava A,
    4. Bogan C,
    5. Dhar S,
    6. Hayakawa K,
    7. Pogue JM,
    8. Bheemreddy S,
    9. Blunden C,
    10. Shango M,
    11. Swan J,
    12. Lephart PR,
    13. Perez F,
    14. Bonomo RA,
    15. Kaye KS
    . 2012. Recent exposure to antimicrobials and carbapenem-resistant Enterobacteriaceae: the role of antimicrobial stewardship. Infect Control Hosp Epidemiol 33:817–830. doi:10.1086/666642.
    OpenUrlCrossRefPubMed
  68. 68.
    1. Miller BM,
    2. Johnson SW
    . 2016. Demographic and infection characteristics of patients with carbapenem-resistant Enterobacteriaceae in a community hospital: development of a bedside clinical score for risk assessment. Am J Infect Control 44:134–137. doi:10.1016/j.ajic.2015.09.006.
    OpenUrlCrossRef
  69. 69.
    1. Poole K,
    2. George R,
    3. Decraene V,
    4. Shankar K,
    5. Cawthorne J,
    6. Savage N,
    7. Welfare W,
    8. Dodgson A
    . 2016. Active case finding for carbapenemase-producing Enterobacteriaceae in a teaching hospital: prevalence and risk factors for colonization. J Hosp Infect 94:125–129. doi:10.1016/j.jhin.2016.06.019.
    OpenUrlCrossRef
  70. 70.
    1. Chitnis AS,
    2. Caruthers PS,
    3. Rao AK,
    4. Lamb J,
    5. Lurvey R,
    6. De Rochars VB,
    7. Kitchel B,
    8. Cancio M,
    9. Török TJ,
    10. Guh AY,
    11. Gould CV,
    12. Wise ME
    . 2012. Outbreak of carbapenem-resistant Enterobacteriaceae at a long-term acute care hospital: sustained reductions in transmission through active surveillance and targeted interventions. Infect Control Hosp Epidemiol 33:984–992. doi:10.1086/667738.
    OpenUrlCrossRefPubMed
  71. 71.
    1. de Jager P,
    2. Chirwa T,
    3. Naidoo S,
    4. Perovic O,
    5. Thomas J
    . 2015. Nosocomial outbreak of New Delhi metallo-beta-lactamase-1-producing gram-negative bacteria in South Africa: a case-control study. PLoS One 10:e0123337. doi:10.1371/journal.pone.0123337.
    OpenUrlCrossRefPubMed
  72. 72.
    1. Kritsotakis EI,
    2. Tsioutis C,
    3. Roumbelaki M,
    4. Christidou A,
    5. Gikas A
    . 2011. Antibiotic use and the risk of carbapenem-resistant extended-spectrum-β-lactamase-producing Klebsiella pneumoniae infection in hospitalized patients: results of a double case-control study. J Antimicrob Chemother 66:1383–1391. doi:10.1093/jac/dkr116.
    OpenUrlCrossRefPubMedWeb of Science
  73. 73.
    1. Ling ML,
    2. Tee YM,
    3. Tan SG,
    4. Amin IM,
    5. How KB,
    6. Tan KY,
    7. Lee LC
    . 2015. Risk factors for acquisition of carbapenem resistant Enterobacteriaceae in an acute tertiary care hospital in Singapore. Antimicrob Resist Infect Control 4:26. doi:10.1186/s13756-015-0066-3.
    OpenUrlCrossRef
  74. 74.
    1. Hussein K,
    2. Raz-Pasteur A,
    3. Finkelstein R,
    4. Neuberger A,
    5. Shachor-Meyouhas Y,
    6. Oren I,
    7. Kassis I
    . 2013. Impact of carbapenem resistance on the outcome of patients' hospital-acquired bacteraemia caused by Klebsiella pneumoniae. J Hosp Infect 83:307–313. doi:10.1016/j.jhin.2012.10.012.
    OpenUrlCrossRefPubMed
  75. 75.
    1. Mantzarlis K,
    2. Makris D,
    3. Manoulakas E,
    4. Karvouniaris M,
    5. Zakynthinos E
    . 2013. Risk factors for the first episode of Klebsiella pneumoniae resistant to carbapenems infection in critically ill patients: a prospective study. Biomed Res Int 2013:850547. doi:10.1155/2013/850547.
    OpenUrlCrossRef
  76. 76.
    1. Zhao ZC,
    2. Xu XH,
    3. Liu MB,
    4. Wu J,
    5. Lin J,
    6. Li B
    . 2014. Fecal carriage of carbapenem-resistant Enterobacteriaceae in a Chinese university hospital. Am J Infect Control 42:e61–e64. doi:10.1016/j.ajic.2014.01.024.
    OpenUrlCrossRefPubMed
  77. 77.
    1. Papadimitriou-Olivgeris M,
    2. Marangos M,
    3. Fligou F,
    4. Christofidou M,
    5. Sklavou C,
    6. Vamvakopoulou S,
    7. Anastassiou ED,
    8. Filos KS
    . 2013. KPC-producing Klebsiella pneumoniae enteric colonization acquired during intensive care unit stay: the significance of risk factors for its development and its impact on mortality. Diagn Microbiol Infect Dis 77:169–173. doi:10.1016/j.diagmicrobio.2013.06.007.
    OpenUrlCrossRefPubMed
  78. 78.
    1. Lee GC,
    2. Lawson KA,
    3. Burgess DS
    . 2013. Clinical epidemiology of carbapenem-resistant Enterobacteriaceae in community hospitals: a case-case-control study. Ann Pharmacother 47:1115–1121. doi:10.1177/1060028013503120.
    OpenUrlCrossRefPubMed
  79. 79.
    1. Swaminathan M,
    2. Sharma S,
    3. Blash SP,
    4. Patel G,
    5. Banach DB,
    6. Phillips M,
    7. LaBombardi V,
    8. Anderson KF,
    9. Kitchel B,
    10. Srinivasan A,
    11. Calfee DP
    . 2013. Prevalence and risk factors for acquisition of carbapenem-resistant Enterobacteriaceae in the setting of endemicity. Infect Control Hosp Epidemiol 34:809–817. doi:10.1086/671270.
    OpenUrlCrossRefPubMed
  80. 80.
    1. Bhargava A,
    2. Hayakawa K,
    3. Silverman E,
    4. Haider S,
    5. Alluri KC,
    6. Datla S,
    7. Diviti S,
    8. Kuchipudi V,
    9. Muppavarapu KS,
    10. Lephart PR,
    11. Marchaim D,
    12. Kaye KS
    . 2014. Risk factors for colonization due to carbapenem-resistant Enterobacteriaceae among patients exposed to long-term acute care and acute care facilities. Infect Control Hosp Epidemiol 35:398–405. doi:10.1086/675614.
    OpenUrlCrossRefPubMed
  81. 81.
    1. Kofteridis DP,
    2. Valachis A,
    3. Dimopoulou D,
    4. Maraki S,
    5. Christidou A,
    6. Mantadakis E,
    7. Samonis G
    . 2014. Risk factors for carbapenem-resistant Klebsiella pneumoniae infection/colonization: a case-case-control study. J Infect Chemother 20:293–297. doi:10.1016/j.jiac.2013.11.007.
    OpenUrlCrossRefPubMed
  82. 82.
    1. Nouvenne A,
    2. Ticinesi A,
    3. Lauretani F,
    4. Maggio M,
    5. Lippi G,
    6. Guida L,
    7. Morelli I,
    8. Ridolo E,
    9. Borghi L,
    10. Meschi T
    . 2014. Comorbidities and disease severity as risk factors for carbapenem-resistant Klebsiella pneumoniae colonization: report of an experience in an internal medicine unit. PLoS One 9:e110001. doi:10.1371/journal.pone.0110001.
    OpenUrlCrossRef
  83. 83.
    1. Pereira MR,
    2. Scully BF,
    3. Pouch SM,
    4. Uhlemann AC,
    5. Goudie S,
    6. Emond JE,
    7. Verna EC
    . 2015. Risk factors and outcomes of carbapenem-resistant Klebsiella pneumoniae infections in liver transplant recipients. Liver Transplant 21:1511–1519. doi:10.1002/lt.24207.
    OpenUrlCrossRef
  84. 84.
    1. Bleumin D,
    2. Cohen MJ,
    3. Moranne O,
    4. Esnault VLM,
    5. Benenson S,
    6. Paltiel O,
    7. Tzukert K,
    8. Mor-Yosef Levi I,
    9. Ben-Dov IZ,
    10. Levi R,
    11. Bloch A,
    12. Haviv YS
    . 2012. Carbapenem-resistant Klebsiella pneumoniae is associated with poor outcome in hemodialysis patients. J Infect 65:318–325. doi:10.1016/j.jinf.2012.06.005.
    OpenUrlCrossRefPubMed
  85. 85.
    1. Gregory CJ,
    2. Llata E,
    3. Stine N,
    4. Gould C,
    5. Santiago LM,
    6. Vazquez GJ,
    7. Robledo IE,
    8. Srinivasan A,
    9. Goering RV,
    10. Tomashek KM
    . 2010. Outbreak of carbapenem-resistant Klebsiella pneumoniae in Puerto Rico associated with a novel carbapenemase variant. Infect Control Hosp Epidemiol 31:476–484. doi:10.1086/651670.
    OpenUrlCrossRefPubMedWeb of Science
  86. 86.
    1. Lee HJ,
    2. Choi JK,
    3. Cho SY,
    4. Kim SH,
    5. Park SH,
    6. Choi SM,
    7. Lee DG,
    8. Choi JH,
    9. Yoo JH
    . 2016. Carbapenem-resistant Enterobacteriaceae: prevalence and risk factors in a single community-based hospital in Korea. Infect Chemother 48:166–173. doi:10.3947/ic.2016.48.3.166.
    OpenUrlCrossRef
  87. 87.
    1. Tian L,
    2. Tan R,
    3. Chen Y,
    4. Sun J,
    5. Liu J,
    6. Qu H,
    7. Wang X
    . 2016. Epidemiology of Klebsiella pneumoniae bloodstream infections in a teaching hospital: factors related to the carbapenem resistance and patient mortality. Antimicrob Resist Infect Control 5:48. doi:10.1186/s13756-016-0145-0.
    OpenUrlCrossRef
  88. 88.
    1. Lin MY,
    2. Lyles-Banks RD,
    3. Lolans K,
    4. Hines DW,
    5. Spear JB,
    6. Petrak R,
    7. Trick WE,
    8. Weinstein RA,
    9. Hayden MK,
    10. Kallen AJ,
    11. Acuna N,
    12. Albright R,
    13. Alexander P,
    14. Anthony T,
    15. Bardowski L,
    16. Berends C,
    17. Bonebrake A,
    18. Bova J,
    19. Braggs A,
    20. Burtun S,
    21. Byrnes MA,
    22. Cagle C,
    23. Chavis R,
    24. Cienkus S,
    25. Collins-Johnson S,
    26. Coomer C,
    27. Chou T,
    28. Cullen D,
    29. Deguzman D,
    30. Donceras O,
    31. Feller M,
    32. Fung S,
    33. Gasienica JAM,
    34. Garcia-Houchins S,
    35. Genovese G,
    36. Gentile M,
    37. Gonzaga G,
    38. Goodwin E,
    39. Hernandez E,
    40. Kerridge J,
    41. Kirk J,
    42. Lavin MA,
    43. Lee S,
    44. Lepinski J,
    45. Myrick S,
    46. Oats T,
    47. O'Donnell A,
    48. Pasinos V,
    49. Patton JA,
    50. Perez M, et al
    . 2013. The importance of long-term acute care hospitals in the regional epidemiology of Klebsiella pneumoniae carbapenemase-producing Enterobacteriaceae. Clin Infect Dis 57:1246–1252. doi:10.1093/cid/cit500.
    OpenUrlCrossRefPubMed
  89. 89.
    1. da Silva KE,
    2. Maciel WG,
    3. Correia Sacchi FP,
    4. Carvalhaes CG,
    5. Rodrigues-Costa F,
    6. da Silva ACR,
    7. Croda MG,
    8. Negrão FJ,
    9. Croda J,
    10. Gales AC,
    11. Simionatto S
    . 2016. Risk factors for KPC-producing Klebsiella pneumoniae: watch out for surgery. J Med Microbiol 65:547–553. doi:10.1099/jmm.0.000254.
    OpenUrlCrossRef
  90. 90.
    1. Ben-David D,
    2. Ganor O,
    3. Yasmin M,
    4. David L,
    5. Nathan K,
    6. Ilana T,
    7. Dalit S,
    8. Smollan G,
    9. Galia R
    . 2012. Epidemiology of carbapenem resistant Klebsiella pneumoniae colonization in an intensive care unit. Eur J Clin Microbiol Infect Dis 31:1811–1817. doi:10.1007/s10096-011-1506-5.
    OpenUrlCrossRefPubMed
  91. 91.
    1. Freire MP,
    2. de Oliveira Garcia D,
    3. Cury AP,
    4. Spadao F,
    5. Di Gioia TS,
    6. Francisco GR,
    7. Bueno MF,
    8. Tomaz M,
    9. de Paula FJ,
    10. de Faro LB,
    11. Piovesan AC,
    12. Rossi F,
    13. Levin AS,
    14. David Neto E,
    15. Nahas WC,
    16. Pierrotti LC
    . 2016. Outbreak of IMP-producing carbapenem-resistant Enterobacter gergoviae among kidney transplant recipients. J Antimicrob Chemother 71:2577–2585. doi:10.1093/jac/dkw165.
    OpenUrlCrossRefPubMed
  92. 92.
    1. Kim S,
    2. Russell D,
    3. Mohamadnejad M,
    4. Makker J,
    5. Sedarat A,
    6. Watson RR,
    7. Yang S,
    8. Hemarajata P,
    9. Humphries R,
    10. Rubin Z,
    11. Muthusamy VR
    . 2016. Risk factors associated with the transmission of carbapenem-resistant Enterobacteriaceae via contaminated duodenoscopes. Gastrointest Endosc 83:1121–1129. doi:10.1016/j.gie.2016.03.790.
    OpenUrlCrossRef
  93. 93.
    1. Freire MP,
    2. Oshiro ICVS,
    3. Pierrotti LC,
    4. Bonazzi PR,
    5. de Oliveira LM,
    6. Song ATW,
    7. Camargo CH,
    8. van der Heijden IM,
    9. Rossi F,
    10. Costa SF,
    11. D'Albuquerque LAC,
    12. Abdala E
    . 2017. Carbapenem-resistant Enterobacteriaceae acquired before liver transplantation: impact on recipient outcomes. Transplantation 101:811–820. doi:10.1097/TP.0000000000001620.
    OpenUrlCrossRef
  94. 94.
    1. Marchaim D,
    2. Navon-Venezia S,
    3. Schwaber MJ,
    4. Carmeli Y
    . 2008. Isolation of imipenem-resistant Enterobacter species: emergence of KPC-2 carbapenemase, molecular characterization, epidemiology, and outcomes. Antimicrob Agents Chemother 52:1413–1418. doi:10.1128/AAC.01103-07.
    OpenUrlAbstract/FREE Full Text
  95. 95.
    1. Vergara-López S,
    2. Domínguez MC,
    3. Conejo MC,
    4. Pascual T,
    5. Rodríguez-Baño J
    . 2015. Lessons from an outbreak of metallo-β-lactamase-producing Klebsiella oxytoca in an intensive care unit: the importance of time at risk and combination therapy. J Hosp Infect 89:123–131. doi:10.1016/j.jhin.2013.12.008.
    OpenUrlCrossRef
  96. 96.
    1. Mouloudi E,
    2. Protonotariou E,
    3. Zagorianou A,
    4. Iosifidis E,
    5. Karapanagiotou A,
    6. Giasnetsova T,
    7. Tsioka A,
    8. Roilides E,
    9. Sofianou D,
    10. Gritsi-Gerogianni N
    . 2010. Bloodstream infections caused by metallo-β-lactamase/Klebsiella pneumoniae carbapenemase-producing K. pneumoniae among intensive care unit patients in Greece: risk factors for infection and impact of type of resistance on outcomes. Infect Control Hosp Epidemiol 31:1250–1256. doi:10.1086/657135.
    OpenUrlCrossRefPubMedWeb of Science
  97. 97.
    1. Adler A,
    2. Solter E,
    3. Masarwa S,
    4. Miller-Roll T,
    5. Abu-Libdeh B,
    6. Khammash H,
    7. Najem K,
    8. Dekadek S,
    9. Stein-Zamir C,
    10. Nubani N,
    11. Kunbar A,
    12. Assous MV,
    13. Carmeli Y,
    14. Schwaber MJ
    . 2013. Epidemiological and microbiological characteristics of an outbreak caused by OXA-48-producing Enterobacteriaceae in a neonatal intensive care unit in Jerusalem, Israel. J Clin Microbiol 51:2926–2930. doi:10.1128/JCM.01049-13.
    OpenUrlAbstract/FREE Full Text
  98. 98.
    1. Agodi A,
    2. Voulgari E,
    3. Barchitta M,
    4. Politi L,
    5. Koumaki V,
    6. Spanakis N,
    7. Giaquinta L,
    8. Valenti G,
    9. Romeo MA,
    10. Tsakris A
    . 2011. Containment of an outbreak of KPC-3-producing Klebsiella pneumoniae in Italy. J Clin Microbiol 49:3986–3989. doi:10.1128/JCM.01242-11.
    OpenUrlAbstract/FREE Full Text
  99. 99.
    1. Alrabaa SF,
    2. Nguyen P,
    3. Sanderson R,
    4. Baluch A,
    5. Sandin RL,
    6. Kelker D,
    7. Karlapalem C,
    8. Thompson P,
    9. Sams K,
    10. Martin S,
    11. Montero J,
    12. Greene JN
    . 2013. Early identification and control of carbapenemase-producing Klebsiella pneumoniae, originating from contaminated endoscopic equipment. Am J Infect Control 41:562–564. doi:10.1016/j.ajic.2012.07.008.
    OpenUrlCrossRefPubMed
  100. 100.
    1. Balkhy HH,
    2. El-Saed A,
    3. Al Johani SM,
    4. Francis C,
    5. Al-Qahtani AA,
    6. Al-Ahdal MN,
    7. Altayeb HT,
    8. Arabi Y,
    9. Alothman A,
    10. Sallah M
    . 2012. The epidemiology of the first described carbapenem-resistant Klebsiella pneumoniae outbreak in a tertiary care hospital in Saudi Arabia: how far do we go? Eur J Clin Microbiol Infect Dis 31:1901–1909. doi:10.1007/s10096-011-1519-0.
    OpenUrlCrossRefPubMed
  101. 101.
    1. Ben-David D,
    2. Maor Y,
    3. Keller N,
    4. Regev-Yochay G,
    5. Tal L,
    6. Shachar D,
    7. Zlotkin A,
    8. Smollan G,
    9. Rahav G
    . 2010. Potential role of active surveillance in the control of a hospital-wide outbreak of carbapenem-resistant Klebsiella pneumoniae infection. Infect Control Hosp Epidemiol 31:620–626. doi:10.1086/652528.
    OpenUrlCrossRefPubMedWeb of Science
  102. 102.
    1. Ben-David D,
    2. Masarwa S,
    3. Adler A,
    4. Mishali H,
    5. Carmeli Y,
    6. Schwaber MJ
    . 2014. A national intervention to prevent the spread of carbapenem-resistant Enterobacteriaceae in Israeli post-acute care hospitals. Infect Control Hosp Epidemiol 35:802–809. doi:10.1086/676876.
    OpenUrlCrossRefPubMed
  103. 103.
    1. Borer A,
    2. Eskira S,
    3. Nativ R,
    4. Saidel-Odes L,
    5. Riesenberg K,
    6. Livshiz-Riven I,
    7. Schlaeffer F,
    8. Sherf M,
    9. Peled N
    . 2011. A multifaceted intervention strategy for eradication of a hospital-wide outbreak caused by carbapenem-resistant Klebsiella pneumoniae in southern Israel. Infect Control Hosp Epidemiol 32:1158–1165. doi:10.1086/662620.
    OpenUrlCrossRefPubMed
  104. 104.
    1. Borgia S,
    2. Lastovetska O,
    3. Richardson D,
    4. Eshaghi A,
    5. Xiong J,
    6. Chung C,
    7. Baqi M,
    8. McGeer A,
    9. Ricci G,
    10. Sawicki R,
    11. Pantelidis R,
    12. Low DE,
    13. Patel SN,
    14. Melano RG
    . 2012. Outbreak of carbapenem-resistant Enterobacteriaceae containing bla NDM-1, Ontario, Canada. Clin Infect Dis 55:e109–e117. doi:10.1093/cid/cis737.
    OpenUrlCrossRefPubMed
  105. 105.
    1. Carbonne A,
    2. Thiolet JM,
    3. Fournier S,
    4. Fortineau N,
    5. Kassis-Chikhani N,
    6. Boytchev I,
    7. Aggoune M,
    8. Séguier JC,
    9. Sénéchal H,
    10. Tavolacci MP,
    11. Coignard B,
    12. Astagneau P,
    13. Jarlier V
    . 2010. Control of a multi-hospital outbreak of KPC-producing Klebsiella pneumoniae type 2 in France, September to October 2009. Euro Surveill 15(48):pii=19734. http://www.eurosurveillance.org/ViewArticle.aspx?ArticleId=19734.
    OpenUrl
  106. 106.
    1. Chang LWK,
    2. Buising KL,
    3. Jeremiah CJ,
    4. Cronin K,
    5. Poy Lorenzo YS,
    6. Howden BP,
    7. Kwong J,
    8. Cocks J,
    9. Blood A,
    10. Greenough J,
    11. Waters MJ
    . 2015. Managing a nosocomial outbreak of carbapenem-resistant Klebsiella pneumoniae: an early Australian hospital experience. Intern Med J 45:1037–1043. doi:10.1111/imj.12863.
    OpenUrlCrossRefPubMed
  107. 107.
    1. Ciobotaro P,
    2. Oved M,
    3. Nadir E,
    4. Bardenstein R,
    5. Zimhony O
    . 2011. An effective intervention to limit the spread of an epidemic carbapenem-resistant Klebsiella pneumoniae strain in an acute care setting: from theory to practice. Am J Infect Control 39:671–677. doi:10.1016/j.ajic.2011.05.004.
    OpenUrlCrossRefPubMedWeb of Science
  108. 108.
    1. Dai Y,
    2. Zhang C,
    3. Ma X,
    4. Chang W,
    5. Hu S,
    6. Jia H,
    7. Huang J,
    8. Lu H,
    9. Li H,
    10. Zhou S,
    11. Qiu G,
    12. Liu J
    . 2014. Outbreak of carbapenemase-producing Klebsiella pneumoniae neurosurgical site infections associated with a contaminated shaving razor used for preoperative scalp shaving. Am J Infect Control 42:805–806. doi:10.1016/j.ajic.2014.03.023.
    OpenUrlCrossRefPubMed
  109. 109.
    1. Douka E,
    2. Perivolioti E,
    3. Kraniotaki E,
    4. Fountoulis K,
    5. Economidou F,
    6. Tsakris A,
    7. Skoutelis A,
    8. Routsi C
    . 2015. Emergence of a pandrug-resistant VIM-1-producing Providencia stuartii clonal strain causing an outbreak in a Greek intensive care unit. Int J Antimicrob Agents 45:533–536. doi:10.1016/j.ijantimicag.2014.12.030.
    OpenUrlCrossRef
  110. 110.
    1. Enfield KB,
    2. Huq NN,
    3. Gosseling MF,
    4. Low DJ,
    5. Hazen KC,
    6. Toney DM,
    7. Slitt G,
    8. Zapata HJ,
    9. Cox HL,
    10. Lewis JD,
    11. Kundzins JR,
    12. Mathers AJ,
    13. Sifri CD
    . 2014. Control of simultaneous outbreaks of carbapenemase-producing Enterobacteriaceae and extensively drug-resistant Acinetobacter baumannii infection in an intensive care unit using interventions promoted in the Centers for Disease Control and Prevention 2012 carbapenemase-resistant Enterobacteriaceae toolkit. Infect Control Hosp Epidemiol 35:810–817. doi:10.1086/676857.
    OpenUrlCrossRefPubMed
  111. 111.
    1. Epson EE,
    2. Pisney LM,
    3. Wendt JM,
    4. MacCannell DR,
    5. Janelle SJ,
    6. Kitchel B,
    7. Kamile Rasheed J,
    8. Limbago BM,
    9. Gould CV,
    10. Kallen AJ,
    11. Barron MA,
    12. Bamberg WM
    . 2014. Carbapenem-resistant Klebsiella pneumoniae producing New Delhi metallo-β-lactamase at an acute care hospital, Colorado, 2012. Infect Control Hosp Epidemiol 35:390–397. doi:10.1086/675607.
    OpenUrlCrossRefPubMed
  112. 112.
    1. Forcina A,
    2. Baldan R,
    3. Marasco V,
    4. Cichero P,
    5. Bondanza A,
    6. Noviello M,
    7. Piemontese S,
    8. Soliman C,
    9. Greco R,
    10. Lorentino F,
    11. Giglio F,
    12. Messina C,
    13. Carrabba M,
    14. Bernardi M,
    15. Peccatori J,
    16. Moro M,
    17. Biancardi A,
    18. Nizzero P,
    19. Scarpellini P,
    20. Cirillo DM,
    21. Mancini N,
    22. Corti C,
    23. Clementi M,
    24. Ciceri F
    . 2017. Control of infectious mortality due to carbapenemase-producing Klebsiella pneumoniae in hematopoietic stem cell transplantation. Bone Marrow Transplant 52:114–119. doi:10.1038/bmt.2016.234.
    OpenUrlCrossRef
  113. 113.
    1. Fournier S,
    2. Monteil C,
    3. Lepainteur M,
    4. Richard C,
    5. Brun-Buisson C,
    6. Jarlier V,
    7. Andremont A,
    8. Armand-Lefevre L,
    9. Birgand G,
    10. Bonnal C,
    11. Lucet JC,
    12. Arlet G,
    13. Denis M,
    14. Baixench MT,
    15. Blanchard H,
    16. Casetta A,
    17. Poupet H,
    18. Barbut F,
    19. Decré D,
    20. Petit JC,
    21. Berche P,
    22. Zahar JR,
    23. Bingen E,
    24. Doit C,
    25. Cambau E,
    26. Guérin JM,
    27. Raskine L,
    28. Carbonne A,
    29. Kac G,
    30. Podglajen I,
    31. Decousser JW,
    32. Derouin V,
    33. Doucet-Populaire F,
    34. Drieux-Rouzet L,
    35. Espinasse F,
    36. Heym B,
    37. Fortineau N,
    38. Nordmann P,
    39. Herrmann JL,
    40. Lawrence C,
    41. Jansen C,
    42. Legrand P,
    43. Lesprit P,
    44. Duviquet M,
    45. Akpabie A,
    46. Kassis-Chikhani N,
    47. Marcadé G,
    48. Fihman V,
    49. Nerome S,
    50. Nicolas-Chanoine MH, et al
    . 2014. Long-term control of carbapenemase-producing Enterobacteriaceae at the scale of a large French multihospital institution: a nine-year experience, France, 2004 to 2012. Euro Surveill 19(19):pii=20802. http://www.eurosurveillance.org/ViewArticle.aspx?ArticleId=20802.
    OpenUrlCrossRef
  114. 114.
    1. Gagliotti C,
    2. Cappelli V,
    3. Carretto E,
    4. Marchi M,
    5. Pan A,
    6. Ragni P,
    7. Sarti M,
    8. Suzzi R,
    9. Tura GA,
    10. Moro ML,
    11. Alfano G,
    12. Amadori A,
    13. Ambretti S,
    14. Antonioli P,
    15. Arlotti M,
    16. Artioli S,
    17. Barbieri M,
    18. Barbolini L,
    19. Barison S,
    20. Bedosti C,
    21. Bergamini R,
    22. Bertozzi L,
    23. Bianchi S,
    24. Brambilla A,
    25. Callea E,
    26. Caminati A,
    27. Capra P,
    28. Carillo C,
    29. Carli S,
    30. Carretto E,
    31. Castellani G,
    32. Cavazzuti L,
    33. Ceccarelli P,
    34. Cugini P,
    35. Di Ruscio E,
    36. D'Erasmo D,
    37. Dodi S,
    38. Farina M,
    39. Farruggia P,
    40. Filippini F,
    41. Finzi G,
    42. Firretti A,
    43. Fusaroli P,
    44. Garlotti A,
    45. Giordani S,
    46. Govoni G,
    47. Lavezzi S,
    48. Liverani S,
    49. Liverani AL,
    50. Lombardi M, et al
    . 2014. Control of carbapenemase-producing Klebsiella pneumoniae: a region-wide intervention. Euro Surveill 19(43):pii=20943. http://www.eurosurveillance.org/ViewArticle.aspx?ArticleId=20943.
    OpenUrl
  115. 115.
    1. Gaibani P,
    2. Ambretti S,
    3. Farruggia P,
    4. Bua G,
    5. Berlingeri A,
    6. Tamburini MV,
    7. Cordovana M,
    8. Guerra L,
    9. Mazzetti M,
    10. Roncarati G,
    11. Tenace C,
    12. Moro ML,
    13. Gagliotti C,
    14. Landini MP,
    15. Sambri V
    . 2013. Outbreak of Citrobacter freundii carrying Vim-1 in an Italian hospital, identified during the carbapenemases screening actions, June 2012. Int J Infect Dis 17:e714–e717. doi:10.1016/j.ijid.2013.02.007.
    OpenUrlCrossRefPubMed
  116. 116.
    1. Ghafur A,
    2. Nagvekar V,
    3. Thilakavathy S,
    4. Chandra K,
    5. Gopalakrishnan R,
    6. Vidyalakshmi P
    , Apollo Speciality Hospital, Chennai, India. 2012. “Save antibiotics, save lives”: an Indian success story of infection control through persuasive diplomacy. Antimicrob Resist Infect Control 1:29. doi:10.1186/2047-2994-1-29.
    OpenUrlCrossRef
  117. 117.
    1. Hayden MK,
    2. Lin MY,
    3. Lolans K,
    4. Weiner S,
    5. Blom D,
    6. Moore NM,
    7. Fogg L,
    8. Henry D,
    9. Lyles R,
    10. Thurlow C,
    11. Sikka M,
    12. Hines D,
    13. Weinstein RA
    . 2015. Prevention of colonization and infection by Klebsiella pneumoniae carbapenemase-producing Enterobacteriaceae in long-term acute-care hospitals. Clin Infect Dis 60:1153–1161. doi:10.1093/cid/ciu1173.
    OpenUrlCrossRefPubMed
  118. 118.
    1. Ho HJ,
    2. Toh CY,
    3. Ang B,
    4. Krishnan P,
    5. Lin RTP,
    6. La MV,
    7. Chow A
    . 2016. Outbreak of New Delhi metallo-β-lactamase-1-producing Enterobacter cloacae in an acute care hospital general ward in Singapore. Am J Infect Control 44:177–182. doi:10.1016/j.ajic.2015.08.028.
    OpenUrlCrossRef
  119. 119.
    1. Kanerva M,
    2. Skogberg K,
    3. Ryynänen K,
    4. Pahkamäki A,
    5. Jalava J,
    6. Ollgren J,
    7. Tarkka E,
    8. Lyytikäinen O
    . 2015. Coincidental detection of the first outbreak of carbapenemase-producing Klebsiella pneumonia colonisation in a primary care hospital, Finland, 2013. Euro Surveill 20(26):pii=21172. http://www.eurosurveillance.org/ViewArticle.aspx?ArticleId=21172.
    OpenUrl
  120. 120.
    1. Kassis-Chikhani N,
    2. Saliba F,
    3. Carbonne A,
    4. Neuville S,
    5. Decre D,
    6. Sengelin C,
    7. Guerin C,
    8. Gastiaburu N,
    9. Lavigne-Kriaa A,
    10. Boutelier C,
    11. Arlet G,
    12. Samuel D,
    13. Castaing D,
    14. Dussaix E,
    15. Jarlier V
    . 2010. Extended measures for controlling an outbreak of VIM-1 producing imipenem-resistant Klebsiella pneumoniae in a liver transplant centre in France, 2003-2004. Euro Surveill 15(46):pii=19713. http://www.eurosurveillance.org/ViewArticle.aspx?ArticleId=19713.
    OpenUrl
  121. 121.
    1. Kim NH,
    2. Han WD,
    3. Song KH,
    4. Seo HK,
    5. Shin MJ,
    6. Kim TS,
    7. Park KU,
    8. Ahn S,
    9. Yoo JS,
    10. Kim ES,
    11. Kim HB
    . 2014. Successful containment of carbapenem-resistant Enterobacteriaceae by strict contact precautions without active surveillance. Am J Infect Control 42:1270–1273. doi:10.1016/j.ajic.2014.09.004.
    OpenUrlCrossRef
  122. 122.
    1. Kola A,
    2. Piening B,
    3. Pape UF,
    4. Veltzke-Schlieker W,
    5. Kaase M,
    6. Geffers C,
    7. Wiedenmann B,
    8. Gastmeier P
    . 2015. An outbreak of carbapenem-resistant OXA-48-producing Klebsiella pneumonia associated to duodenoscopy. Antimicrob Resist Infect Control 4:8. doi:10.1186/s13756-015-0049-4.
    OpenUrlCrossRef
  123. 123.
    1. Landman D,
    2. Babu E,
    3. Shah N,
    4. Kelly P,
    5. Olawole O,
    6. Bäcker M,
    7. Bratu S,
    8. Quale J
    . 2012. Transmission of carbapenem-resistant pathogens in New York City hospitals: progress and frustration. J Antimicrob Chemother 67:1427–1431. doi:10.1093/jac/dks063.
    OpenUrlCrossRefPubMedWeb of Science
  124. 124.
    1. Lemmenmeier E,
    2. Kohler P,
    3. Bruderer T,
    4. Goldenberger D,
    5. Kleger GR,
    6. Schlegel M
    . 2014. First documented outbreak of KPC-2-producing Klebsiella pneumoniae in Switzerland: infection control measures and clinical management. Infection 42:529–534. doi:10.1007/s15010-013-0578-9.
    OpenUrlCrossRef
  125. 125.
    1. Lowe CF,
    2. Kus JV,
    3. Salt N,
    4. Callery S,
    5. Louie L,
    6. Khan MA,
    7. Vearncombe M,
    8. Simor AE
    . 2013. Nosocomial transmission of New Delhi metallo-beta-lactamase-1-producing Klebsiella pneumoniae in Toronto, Canada. Infect Control Hosp Epidemiol 34:49–55. doi:10.1086/668778.
    OpenUrlCrossRefPubMed
  126. 126.
    1. Matsumura Y,
    2. Tanaka M,
    3. Yamamoto M,
    4. Nagao M,
    5. Machida K,
    6. Ito Y,
    7. Takakura S,
    8. Ogawa K,
    9. Yoshizawa A,
    10. Fujimoto Y,
    11. Okamoto S,
    12. Uemoto S,
    13. Ichiyama S
    . 2015. High prevalence of carbapenem resistance among plasmid-mediated AmpC β-lactamase-producing Klebsiella pneumoniae during outbreaks in liver transplantation units. Int J Antimicrob Agents 45:33–40. doi:10.1016/j.ijantimicag.2014.08.015.
    OpenUrlCrossRef
  127. 127.
    1. Meletis G,
    2. Oustas E,
    3. Botziori C,
    4. Kakasi E,
    5. Koteli A
    . 2015. Containment of carbapenem resistance rates of Klebsiella pneumoniae and Acinetobacter baumannii in a Greek hospital with a concomitant increase in colistin, gentamicin and tigecycline resistance. New Microbiol 38:417–421.
    OpenUrlPubMed
  128. 128.
    1. Meybeck A,
    2. Laurans C,
    3. Broucqsault-Dedrie C,
    4. Vanbaelinghem C,
    5. Verheyde I,
    6. Ledez R,
    7. Nyunga M,
    8. Nottebaert S,
    9. Waes S,
    10. Vachée A
    . 2014. Rapid containment of coincident outbreaks with 2 carbapenem-resistant Klebsiella pneumoniae strains in an intensive care unit. Am J Infect Control 42:929–931. doi:10.1016/j.ajic.2014.04.015.
    OpenUrlCrossRef
  129. 129.
    1. Morris D,
    2. Boyle F,
    3. Morris C,
    4. Condon I,
    5. Delannoy-Vieillard AS,
    6. Power L,
    7. Khan A,
    8. Morris-Downes M,
    9. Finnegan C,
    10. Powell J,
    11. Monahan R,
    12. Burns K,
    13. O'Connell N,
    14. Boyle L,
    15. O'Gorman A,
    16. Humphreys H,
    17. Brisse S,
    18. Turton J,
    19. Woodford N,
    20. Cormican M
    . 2012. Inter-hospital outbreak of Klebsiella pneumoniae producing KPC-2 carbapenemase in Ireland. J Antimicrob Chemother 67:2367–2372. doi:10.1093/jac/dks239.
    OpenUrlCrossRefPubMed
  130. 130.
    1. Munoz-Price LS,
    2. Hayden MK,
    3. Lolans K,
    4. Won S,
    5. Calvert K,
    6. Lin M,
    7. Stemer A,
    8. Weinstein RA
    . 2010. Successful control of an outbreak of Klebsiella pneumoniae carbapenemase-producing K. pneumoniae at a long-term acute care hospital. Infect Control Hosp Epidemiol 31:341–347. doi:10.1086/651097.
    OpenUrlCrossRefPubMedWeb of Science
  131. 131.
    1. O'Connor C,
    2. Cormican M,
    3. Boo TW,
    4. McGrath E,
    5. Slevin B,
    6. O'Gorman A,
    7. Commane M,
    8. Mahony S,
    9. O'Donovan E,
    10. Powell J,
    11. Monahan R,
    12. Finnegan C,
    13. Kiernan MG,
    14. Coffey JC,
    15. Power L,
    16. O'Connell NH,
    17. Dunne CP
    . 2016. An Irish outbreak of New Delhi metallo-β-lactamase (NDM)-1 carbapenemase-producing Enterobacteriaceae: increasing but unrecognized prevalence. J Hosp Infect 94:351–357. doi:10.1016/j.jhin.2016.08.005.
    OpenUrlCrossRef
  132. 132.
    1. Pang F,
    2. Jia XQ,
    3. Wang B,
    4. Li YH,
    5. Zhao QG
    . 2014. Control of an outbreak due to orthopedic infections caused by Enterobacteriaceae producing IMP-4 or IMP-8 carbapenemases. Pathol Biol 62:152–155. doi:10.1016/j.patbio.2014.01.004.
    OpenUrlCrossRefPubMed
  133. 133.
    1. Poulou A,
    2. Voulgari E,
    3. Vrioni G,
    4. Koumaki V,
    5. Xidopoulos G,
    6. Chatzipantazi V,
    7. Markou F,
    8. Tsakris A
    . 2013. Outbreak caused by an ertapenem-resistant, CTX-M-15-producing Klebsiella pneumoniae sequence type 101 clone carrying an OmpK36 porin variant. J Clin Microbiol 51:3176–3182. doi:10.1128/JCM.01244-13.
    OpenUrlAbstract/FREE Full Text
  134. 134.
    1. Robustillo Rodela A,
    2. Díaz-Agero Pérez C,
    3. Sanchez Sagrado T,
    4. Ruiz-Garbajosa P,
    5. Pita López MJ,
    6. Monge V
    . 2012. Emergence and outbreak of carbapenemase-producing KPC-3 Klebsiella pneumoniae in Spain, September 2009 to February 2010: control measures. Euro Surveill 17(7):pii=20086. http://www.eurosurveillance.org/ViewArticle.aspx?ArticleId=20086.
  135. 135.
    1. Rossi Gonçalves I,
    2. Ferreira ML,
    3. Araujo BF,
    4. Campos PA,
    5. Royer S,
    6. Batistão DWF,
    7. Souza LP,
    8. Brito CS,
    9. Urzedo JE,
    10. Gontijo-Filho PP,
    11. Ribas RM
    . 2016. Outbreaks of colistin-resistant and colistin-susceptible KPC-producing Klebsiella pneumoniae in a Brazilian intensive care unit. J Hosp Infect 94:322–329. doi:10.1016/j.jhin.2016.08.019.
    OpenUrlCrossRef
  136. 136.
    1. Schreterova E,
    2. Takacova V,
    3. Niks M,
    4. Pastvova L,
    5. Tomco L,
    6. Siegfried L
    . 2014. Methods of phenotypic determination of New Delhi metallo-beta-lactamase (NDM-1) in Klebsiella pneumoniae isolated in Slovakia. Klin Mikrobiol Infekc Lek 20:79–84. (In Slovak.)
    OpenUrl
  137. 137.
    1. Seara N,
    2. Oteo J,
    3. Carrillo R,
    4. Pérez-Blanco V,
    5. Mingorance J,
    6. Gómez-Gil R,
    7. Herruzo R,
    8. Pérez-Vázquez M,
    9. Astray J,
    10. García-Rodríguez J,
    11. Ruiz-Velasco LM,
    12. Campos J,
    13. De Burgos C,
    14. Ruiz-Carrascoso G
    . 2015. Interhospital spread of NDM-7-producing Klebsiella pneumoniae belonging to ST437 in Spain. Int J Antimicrob Agents 46:169–173. doi:10.1016/j.ijantimicag.2015.04.001.
    OpenUrlCrossRefPubMed
  138. 138.
    1. Schwaber MJ,
    2. Lev B,
    3. Israeli A,
    4. Solter E,
    5. Smollan G,
    6. Rubinovitch B,
    7. Shalit I,
    8. Carmeli Y
    . 2011. Containment of a country-wide outbreak of carbapenem-resistant Klebsiella pneumoniae in Israeli hospitals via a nationally implemented intervention. Clin Infect Dis 52:848–855. doi:10.1093/cid/cir025.
    OpenUrlCrossRefPubMedWeb of Science
  139. 139.
    1. Seiffert SN,
    2. Marschall J,
    3. Perreten V,
    4. Carattoli A,
    5. Furrer H,
    6. Endimiani A
    . 2014. Emergence of Klebsiella pneumoniae co-producing NDM-1, OXA-48, CTX-M-15, CMY-16, QnrA and ArmA in Switzerland. Int J Antimicrob Agents 44:260–262. doi:10.1016/j.ijantimicag.2014.05.008.
    OpenUrlCrossRefPubMed
  140. 140.
    1. Semin-Pelletier B,
    2. Cazet L,
    3. Bourigault C,
    4. Juvin ME,
    5. Boutoille D,
    6. Raffi F,
    7. Hourmant M,
    8. Blancho G,
    9. Agard C,
    10. Connault J,
    11. Corvec S,
    12. Caillon J,
    13. Batard E,
    14. Lepelletier D
    . 2015. Challenges of controlling a large outbreak of OXA-48 carbapenemase-producing Klebsiella pneumoniae in a French university hospital. J Hosp Infect 89:248–253. doi:10.1016/j.jhin.2014.11.018.
    OpenUrlCrossRef
  141. 141.
    1. Shilo S,
    2. Assous MV,
    3. Lachish T,
    4. Kopuit P,
    5. Bdolah-Abram T,
    6. Yinnon AM,
    7. Wiener-Well Y
    . 2013. Risk factors for bacteriuria with carbapenem-resistant Klebsiella pneumoniae and its impact on mortality: a case-control study. Infection 41:503–509. doi:10.1007/s15010-012-0380-0.
    OpenUrlCrossRefPubMed
  142. 142.
    1. Snitkin ES,
    2. Zelazny AM,
    3. Thomas PJ,
    4. Stock F,
    5. Henderson DK,
    6. Palmore TN,
    7. Segre JA
    . 2012. Tracking a hospital outbreak of carbapenem-resistant Klebsiella pneumoniae with whole-genome sequencing. Sci Transl Med 4:148ra116. doi:10.1126/scitranslmed.3004129.
    OpenUrlAbstract/FREE Full Text
  143. 143.
    1. Teare L,
    2. Myers J,
    3. Kirkham A,
    4. Tredoux T,
    5. Martin R,
    6. Boasman S,
    7. Wisbey A,
    8. Charlton C,
    9. Dziewulski P
    . 2016. Prevention and control of carbapenemase-producing organisms at a regional burns centre. J Hosp Infect 93:141–144. doi:10.1016/j.jhin.2016.03.002.
    OpenUrlCrossRefPubMed
  144. 144.
    1. Thomas CP,
    2. Moore LSP,
    3. Elamin N,
    4. Doumith M,
    5. Zhang J,
    6. Maharjan S,
    7. Warner M,
    8. Perry C,
    9. Turton JF,
    10. Johnstone C,
    11. Jepson A,
    12. Duncan NDC,
    13. Holmes AH,
    14. Livermore DM,
    15. Woodford N
    . 2013. Early (2008-2010) hospital outbreak of Klebsiella pneumoniae producing OXA-48 carbapenemase in the UK. Int J Antimicrob Agents 42:531–536. doi:10.1016/j.ijantimicag.2013.08.020.
    OpenUrlCrossRefPubMed
  145. 145.
    1. Vergara-Lopez S,
    2. Dominguez MC,
    3. Conejo MC,
    4. Pascual A,
    5. Rodriguez-Bano J
    . 2013. Wastewater drainage system as an occult reservoir in a protracted clonal outbreak due to metallo-beta-lactamase-producing Klebsiella oxytoca. Clin Microbiol Infect 19:E490–E498. doi:10.1111/1469-0691.12288.
    OpenUrlCrossRef
  146. 146.
    1. Viale P,
    2. Tumietto F,
    3. Giannella M,
    4. Bartoletti M,
    5. Tedeschi S,
    6. Ambretti S,
    7. Cristini F,
    8. Gibertoni C,
    9. Venturi S,
    10. Cavalli M,
    11. De Palma A,
    12. Puggioli MC,
    13. Mosci D,
    14. Callea E,
    15. Masina R,
    16. Moro ML,
    17. Lewis RE
    . 2015. Impact of a hospital-wide multifaceted programme for reducing carbapenem-resistant Enterobacteriaceae infections in a large teaching hospital in northern Italy. Clin Microbiol Infect 21:242–247. doi:10.1016/j.cmi.2014.10.020.
    OpenUrlCrossRef
  147. 147.
    1. Virgincar N,
    2. Iyer S,
    3. Stacey A,
    4. Maharjan S,
    5. Pike R,
    6. Perry C,
    7. Wyeth J,
    8. Woodford N
    . 2011. Klebsiella pneumoniae producing KPC carbapenemase in a district general hospital in the UK. J Hosp Infect 78:293–296. doi:10.1016/j.jhin.2011.03.016.
    OpenUrlCrossRefPubMed
  148. 148.
    1. Wendt C,
    2. Schütt S,
    3. Dalpke AH,
    4. Konrad M,
    5. Mieth M,
    6. Trierweiler-Hauke B,
    7. Weigand MA,
    8. Zimmermann S,
    9. Biehler K,
    10. Jonas D
    . 2010. First outbreak of Klebsiella pneumoniae carbapenemase (KPC)-producing K. pneumoniae in Germany. Eur J Clin Microbiol Infect Dis 29:563–570. doi:10.1007/s10096-010-0896-0.
    OpenUrlCrossRefPubMedWeb of Science
  149. 149.
    1. Weterings V,
    2. Zhou K,
    3. Rossen JW,
    4. van Stenis D,
    5. Thewessen E,
    6. Kluytmans J,
    7. Veenemans J
    . 2015. An outbreak of colistin-resistant Klebsiella pneumoniae carbapenemase-producing Klebsiella pneumoniae in the Netherlands (July to December 2013), with inter-institutional spread. Eur J Clin Microbiol Infect Dis 34:1647–1655. doi:10.1007/s10096-015-2401-2.
    OpenUrlCrossRefPubMed
  150. 150.
    1. Wrenn C,
    2. O'Brien D,
    3. Keating D,
    4. Roche C,
    5. Rose L,
    6. Ronayne A,
    7. Fenelon L,
    8. Fitzgerald S,
    9. Crowley B,
    10. Schaffer K
    . 2014. Investigation of the first outbreak of OXA-48-producing Klebsiella pneumoniae in Ireland. J Hosp Infect 87:41–46. doi:10.1016/j.jhin.2014.03.001.
    OpenUrlCrossRef
  151. 151.
    1. Yu F,
    2. Ying Q,
    3. Chen C,
    4. Li T,
    5. Ding B,
    6. Liu Y,
    7. Lu Y,
    8. Qin Z,
    9. Parson C,
    10. Salgado C,
    11. Qu D,
    12. Pan J,
    13. Wang L
    . 2012. Outbreak of pulmonary infection caused by Klebsiella pneumoniae isolates harbouring blaIMP-4 and blaDHA-1 in a neonatal intensive care unit in China. J Med Microbiol 61:984–989. doi:10.1099/jmm.0.043000-0.
    OpenUrlCrossRefPubMed
  152. 152.
    1. Yu J,
    2. Tan K,
    3. Rong Z,
    4. Wang Y,
    5. Chen Z,
    6. Zhu X,
    7. Wu L,
    8. Tan L,
    9. Xiong W,
    10. Sun Z,
    11. Chen L
    . 2016. Nosocomial outbreak of KPC-2- and NDM-1-producing Klebsiella pneumoniae in a neonatal ward: a retrospective study. BMC Infect Dis 16:563. doi:10.1186/s12879-016-1870-y.
    OpenUrlCrossRef
  153. 153.
    1. Zavascki AP,
    2. Carvalhaes CG,
    3. da Silva GL,
    4. Tavares Soares SP,
    5. de Alcantara LR,
    6. Elias LS,
    7. Sandri AM,
    8. Gales AC
    . 2012. Outbreak of carbapenem-resistant Providencia stuartii in an intensive care unit. Infect Control Hosp Epidemiol 33:627–630. doi:10.1086/665730.
    OpenUrlCrossRefPubMed
  154. 154.
    1. Cheng VCC,
    2. Chan JFW,
    3. Wong SCY,
    4. Chen JHK,
    5. Tai JWM,
    6. Yan MK,
    7. Kwan GSW,
    8. Tse H,
    9. To KKW,
    10. Ho PL,
    11. Yuen KY
    . 2013. Proactive infection control measures to prevent nosocomial transmission of carbapenem-resistant Enterobacteriaceae in a non-endemic area. Chin Med J 126:4504–4509.
    OpenUrl
  155. 155.
    1. Fukigai S,
    2. Alba J,
    3. Kimura S,
    4. Iida T,
    5. Nishikura N,
    6. Ishii Y,
    7. Yamaguchi K
    . 2007. Nosocomial outbreak of genetically related IMP-1 β-lactamase-producing Klebsiella pneumoniae in a general hospital in Japan. Int J Antimicrob Agents 29:306–310. doi:10.1016/j.ijantimicag.2006.10.011.
    OpenUrlCrossRefPubMed
  156. 156.
    1. Bellodi A,
    2. Del Corso L,
    3. Favorini S,
    4. Molinari E,
    5. Coppo E,
    6. Orengo G,
    7. Del Bono V,
    8. Ghio R,
    9. Arboscello E
    . 2016. Management of Klebsiella pneumoniae KPC outbreak in internal medicine. Acta Med Mediterr 32:823–827. http://www.actamedicamediterranea.com/archive/2016/medica-3/management-of-klebsiella-pneumoniae-kpc-outbreak-in-internal-medicine/pdf.
    OpenUrl
  157. 157.
    1. Bustos-Moya G,
    2. Josa-Montero D,
    3. Perea-Ronco J,
    4. Gualtero-Trujillo S,
    5. Ortiz-Aroca J,
    6. Novoa-Bernal Á,
    7. Arias-León G,
    8. Silva-Monsalve E,
    9. Buitrago-Bernal R,
    10. Poveda-Henao M
    . 2016. Factors related to successful control of an outbreak by Klebsiella pneumonia-producing KPC-2 in an intensive care unit in Bogotá, Colombia. Infectio 20:25–32. doi:10.1016/j.infect.2015.07.001.
    OpenUrlCrossRef
  158. 158.
    1. Chabah M,
    2. Chemsi M,
    3. Zerouali K,
    4. Alloula O,
    5. Lehlimi M,
    6. Habzi A,
    7. Benomar S
    . 2016. Healthcare-associated infections due to carbapenemase-producing Enterobacteriaceae: bacteriological profile and risk factors. Med Mal Infect 46:157–162. doi:10.1016/j.medmal.2015.12.015.
    OpenUrlCrossRef
  159. 159.
    1. Cohen MJ,
    2. Block C,
    3. Levin PD,
    4. Schwartz C,
    5. Gross I,
    6. Weiss Y,
    7. Moses AE,
    8. Benenson S
    . 2011. Institutional control measures to curtail the epidemic spread of carbapenem-resistant Klebsiella pneumoniae: a 4-year perspective. Infect Control Hosp Epidemiol 32:673–678. doi:10.1086/660358.
    OpenUrlCrossRefPubMed
  160. 160.
    1. Dautzenberg MJ,
    2. Ossewaarde JM,
    3. de Kraker ME,
    4. van der Zee A,
    5. van Burgh S,
    6. de Greeff SC,
    7. Bijlmer HA,
    8. Grundmann H,
    9. Cohen Stuart JW,
    10. Fluit AC,
    11. Troelstra A,
    12. Bonten MJ
    . 2014. Successful control of a hospital-wide outbreak of OXA-48 producing Enterobacteriaceae in the Netherlands, 2009 to 2011. Euro Surveill 19(9):pii=20723. http://www.eurosurveillance.org/ViewArticle.aspx?ArticleId=20723.
    OpenUrlCrossRef
  161. 161.
    1. Delory T,
    2. Seringe E,
    3. Antoniotti G,
    4. Novakova I,
    5. Goulenok C,
    6. Paysant I,
    7. Boyer S,
    8. Carbonne A,
    9. Naas T,
    10. Astagneau P
    . 2015. Prolonged delay for controlling KPC-2-producing Klebsiella pneumoniae outbreak: the role of clinical management. Am J Infect Control 43:1070–1075. doi:10.1016/j.ajic.2015.05.021.
    OpenUrlCrossRefPubMed
  162. 162.
    1. Schwaber MJ,
    2. Carmeli Y.
    2014. An ongoing national intervention to contain the spread of carbapenem-resistant Enterobacteriaceae. Clin Infect Dis 58:697–703. doi:10.1093/cid/cit795.
    OpenUrlCrossRefPubMed
  163. 163.
    1. Gaibani P,
    2. Colombo R,
    3. Arghittu M,
    4. Cariani L,
    5. Ambretti S,
    6. Bua G,
    7. Lombardo D,
    8. Landini MP,
    9. Torresani E,
    10. Sambri V
    . 2014. Successful containment and infection control of a carbapenem-resistant Klebsiella pneumoniae outbreak in an Italian hospital. New Microbiol 37:87–90.
    OpenUrl
  164. 164.
    1. Jimenez A,
    2. Castro JG,
    3. Munoz-Price LS,
    4. de Pascale D,
    5. Shimose L,
    6. Mustapha MM,
    7. Spychala CN,
    8. Mettus RT,
    9. Cooper VS,
    10. Doi Y
    . 2017. Outbreak of Klebsiella pneumoniae carbapenemase-producing Citrobacter freundii at a tertiary acute care facility in Miami, Florida. Infect Control Hosp Epidemiol 38:320–326. doi:10.1017/ice.2016.273.
    OpenUrlCrossRef
  165. 165.
    1. Kochar S,
    2. Sheard T,
    3. Sharma R,
    4. Hui A,
    5. Tolentino E,
    6. Allen G,
    7. Landman D,
    8. Bratu S,
    9. Augenbraun M,
    10. Quale J
    . 2009. Success of an infection control program to reduce the spread of carbapenem-resistant Klebsiella pneumoniae. Infect Control Hosp Epidemiol 30:447–452. doi:10.1086/596734.
    OpenUrlCrossRefPubMedWeb of Science
  166. 166.
    1. Leitner E,
    2. Zarfel G,
    3. Luxner J,
    4. Herzog K,
    5. Pekard-Amenitsch S,
    6. Hoenigl M,
    7. Valentin T,
    8. Feierl G,
    9. Grisold AJ,
    10. Högenauer C,
    11. Sill H,
    12. Krause R,
    13. Zollner-Schwetzd I
    . 2015. Contaminated handwashing sinks as the source of a clonal outbreak of KPC-2-producing Klebsiella oxytoca on a hematology ward. Antimicrob Agents Chemother 59:714–716. doi:10.1128/AAC.04306-14.
    OpenUrlAbstract/FREE Full Text
  167. 167.
    1. Munoz-Price LS,
    2. De La Cuesta C,
    3. Adams S,
    4. Wyckoff M,
    5. Cleary T,
    6. McCurdy SP,
    7. Huband MD,
    8. Lemmon MM,
    9. Lescoe M,
    10. Dibhajj FB,
    11. Hayden MK,
    12. Lolans K,
    13. Quinn JP
    . 2010. Successful eradication of a monoclonal strain of Klebsiella pneumoniae during a K. pneumoniae carbapenemase-producing K. pneumoniae outbreak in a surgical intensive care unit in Miami, Florida. Infect Control Hosp Epidemiol 31:1074–1077. doi:10.1086/656243.
    OpenUrlCrossRefPubMedWeb of Science
  168. 168.
    1. Poulou A,
    2. Voulgari E,
    3. Vrioni G,
    4. Xidopoulos G,
    5. Pliagkos A,
    6. Chatzipantazi V,
    7. Markou F,
    8. Tsakris A
    . 2012. Imported Klebsiella pneumoniae carbapenemase-producing K. pneumoniae clones in a Greek hospital: impact of infection control measures for restraining their dissemination. J Clin Microbiol 50:2618–2623. doi:10.1128/JCM.00459-12.
    OpenUrlAbstract/FREE Full Text
  169. 169.
    1. Steinmann J,
    2. Kaase M,
    3. Gatermann S,
    4. Popp W,
    5. Steinmann E,
    6. Damman M,
    7. Paul A,
    8. Saner F,
    9. Buer J,
    10. Rath PM
    . 2011. Outbreak due to a Klebsiella pneumoniae strain harbouring KPC-2 and VIM-1 in a German university hospital, July 2010 to January 2011. Euro Surveill 16(33):pii=19944. http://www.eurosurveillance.org/ViewArticle.aspx?ArticleId=19944.
    OpenUrl
  170. 170.
    1. Zhou J,
    2. Li G,
    3. Ma X,
    4. Yang Q,
    5. Yi J
    . 2015. Outbreak of colonization by carbapenemase-producing Klebsiella pneumoniae in a neonatal intensive care unit: investigation, control measures and assessment. Am J Infect Control 43:1122–1124. doi:10.1016/j.ajic.2015.05.038.
    OpenUrlCrossRef
  171. 171.
    Centers for Disease Control and Prevention. 2011. Carbapenem-resistant Klebsiella pneumoniae associated with a long-term-care facility—West Virginia, 2009-2011. MMWR Morb Mortal Wkly Rep 60:1418–1420.
    OpenUrlPubMed
  172. 172.
    1. Abboud CS,
    2. de Souza EE,
    3. Zandonadi EC,
    4. Borges LS,
    5. Miglioli L,
    6. Monaco FC,
    7. Barbosa VL,
    8. Cortez D,
    9. Bianco AC,
    10. Braz A,
    11. Monteiro J
    . 2016. Carbapenem-resistant Enterobacteriaceae on a cardiac surgery intensive care unit: successful measures for infection control. J Hosp Infect 94:60–64. doi:10.1016/j.jhin.2016.06.010.
    OpenUrlCrossRef
  173. 173.
    1. Chen S,
    2. Hu F,
    3. Liu Y,
    4. Zhu D,
    5. Wang H,
    6. Zhang Y
    . 2011. Detection and spread of carbapenem-resistant Citrobacter freundii in a teaching hospital in China. Am J Infect Control 39:e55–e60. doi:10.1016/j.ajic.2011.02.009.
    OpenUrlCrossRefPubMed
  174. 174.
    1. Clarivet B,
    2. Grau D,
    3. Jumas-Bilak E,
    4. Jean-Pierre H,
    5. Pantel A,
    6. Parer S,
    7. Lotthé A
    . 2016. Persisting transmission of carbapenemase-producing Klebsiella pneumoniae due to an environmental reservoir in a university hospital, France, 2012 to 2014. Euro Surveill 21(17):pii=30213. doi:10.2807/1560-7917.ES.2016.21.17.30213.
    OpenUrlCrossRef
  175. 175.
    1. Marra AR,
    2. de Almeida SM,
    3. Correa L,
    4. Silva M, Jr,
    5. Martino MDV,
    6. Silva CV,
    7. Rodrigues Cal RG,
    8. Edmond MB,
    9. dos Santos OFP
    . 2009. The effect of limiting antimicrobial therapy duration on antimicrobial resistance in the critical care setting. Am J Infect Control 37:204–209. doi:10.1016/j.ajic.2008.06.008.
    OpenUrlCrossRefPubMedWeb of Science
  176. 176.
    1. Domínguez Jiménez MC,
    2. Vergara-López S
    . 2016. Environmental sampling protocol devised and implemented to resolve a nosocomial outbreak due to carbapenem-resistant Klebsiella oxytoca. Am J Infect Control 44:1401–1403. doi:10.1016/j.ajic.2016.04.219.
    OpenUrlCrossRef
  177. 177.
    1. Kotsanas D,
    2. Wijesooriya WRPLI,
    3. Korman TM,
    4. Gillespie EE,
    5. Wright L,
    6. Snook K,
    7. Williams N,
    8. Bell JM,
    9. Li HY,
    10. Stuart RL
    . 2013. “Down the drain”: carbapenem-resistant bacteria in intensive care unit patients and handwashing sinks. Med J Aust 198:267–269. doi:10.5694/mja12.11757.
    OpenUrlCrossRefPubMedWeb of Science
  178. 178.
    1. Leung GHY,
    2. Gray TJ,
    3. Cheong EYL,
    4. Haertsch P,
    5. Gottlieb T
    . 2013. Persistence of related bla-IMP-4 metallo-beta-lactamase producing Enterobacteriaceae from clinical and environmental specimens within a burns unit in Australia—a six-year retrospective study. Antimicrob Resist Infect Control 2:35. doi:10.1186/2047-2994-2-35.
    OpenUrlCrossRefPubMed
  179. 179.
    1. Hu L,
    2. Liu Y,
    3. Deng L,
    4. Zhong Q,
    5. Hang Y,
    6. Wang Z,
    7. Zhan L,
    8. Wang L,
    9. Yu F
    . 2016. Outbreak by ventilator-associated ST11 K. pneumoniae with co-production of CTX-M-24 and KPC-2 in a SICU of a tertiary teaching hospital in central China. Front Microbiol 7:1190. doi:10.3389/fmicb.2016.01190.
    OpenUrlCrossRef
  180. 180.
    1. Marsh JW,
    2. Krauland MG,
    3. Nelson JS,
    4. Schlackman JL,
    5. Brooks AM,
    6. Pasculle AW,
    7. Shutt KA,
    8. Doi Y,
    9. Querry AM,
    10. Muto CA,
    11. Harrison LH
    . 2015. Genomic epidemiology of an endoscope-associated outbreak of Klebsiella pneumoniae carbapenemase (KPC)-producing K. pneumoniae. PLoS One 10:e0144310. doi:10.1371/journal.pone.0144310.
    OpenUrlCrossRefPubMed
  181. 181.
    1. Epstein L,
    2. Hunter JC,
    3. Arwady MA,
    4. Tsai V,
    5. Stein L,
    6. Gribogiannis M,
    7. Frias M,
    8. Guh AY,
    9. Laufer AS,
    10. Black S,
    11. Pacilli M,
    12. Moulton-Meissner H,
    13. Rasheed JK,
    14. Avillan JJ,
    15. Kitchel B,
    16. Limbago BM,
    17. MacCannell D,
    18. Lonsway D,
    19. Noble-Wang J,
    20. Conway J,
    21. Conover C,
    22. Vernon M,
    23. Kallen AJ
    . 2014. New Delhi metallo-β-lactamase-producing carbapenem-resistant Escherichia coli associated with exposure to duodenoscopes. JAMA 312:1447–1455. doi:10.1001/jama.2014.12720.
    OpenUrlCrossRefPubMed
  182. 182.
    1. Chang CL,
    2. Su LH,
    3. Lu CM,
    4. Tai FT,
    5. Huang YC,
    6. Chang KK
    . 2013. Outbreak of ertapenem-resistant Enterobacter cloacae urinary tract infections due to a contaminated ureteroscope. J Hosp Infect 85:118–124. doi:10.1016/j.jhin.2013.06.010.
    OpenUrlCrossRefPubMed
PreviousNext
Back to top
Download PDF
Citation Tools
A Systematic Review and Meta-analyses of the Clinical Epidemiology of Carbapenem-Resistant Enterobacteriaceae
Karlijn van Loon, Anne F. Voor in ‘t holt, Margreet C. Vos
Antimicrobial Agents and Chemotherapy Dec 2017, 62 (1) e01730-17; DOI: 10.1128/AAC.01730-17

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Print

Alerts
Sign In to Email Alerts with your Email Address
Email

Thank you for sharing this Antimicrobial Agents and Chemotherapy article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
A Systematic Review and Meta-analyses of the Clinical Epidemiology of Carbapenem-Resistant Enterobacteriaceae
(Your Name) has forwarded a page to you from Antimicrobial Agents and Chemotherapy
(Your Name) thought you would be interested in this article in Antimicrobial Agents and Chemotherapy.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
A Systematic Review and Meta-analyses of the Clinical Epidemiology of Carbapenem-Resistant Enterobacteriaceae
Karlijn van Loon, Anne F. Voor in ‘t holt, Margreet C. Vos
Antimicrobial Agents and Chemotherapy Dec 2017, 62 (1) e01730-17; DOI: 10.1128/AAC.01730-17
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Top
  • Article
    • ABSTRACT
    • INTRODUCTION
    • RESULTS
    • DISCUSSION
    • MATERIALS AND METHODS
    • ACKNOWLEDGMENTS
    • FOOTNOTES
    • REFERENCES
  • Figures & Data
  • Info & Metrics
  • PDF

KEYWORDS

Enterobacteriaceae
resistance
carbapenem
risk factors
systematic review
meta-analysis

Related Articles

Cited By...

About

  • About AAC
  • Editor in Chief
  • Editorial Board
  • Policies
  • For Reviewers
  • For the Media
  • For Librarians
  • For Advertisers
  • Alerts
  • AAC Podcast
  • RSS
  • FAQ
  • Permissions
  • Journal Announcements

Authors

  • ASM Author Center
  • Submit a Manuscript
  • Article Types
  • Ethics
  • Contact Us

Follow #AACJournal

@ASMicrobiology

       

ASM Journals

ASM journals are the most prominent publications in the field, delivering up-to-date and authoritative coverage of both basic and clinical microbiology.

About ASM | Contact Us | Press Room

 

ASM is a member of

Scientific Society Publisher Alliance

 

American Society for Microbiology
1752 N St. NW
Washington, DC 20036
Phone: (202) 737-3600

Copyright © 2021 American Society for Microbiology | Privacy Policy | Website feedback

Print ISSN: 0066-4804; Online ISSN: 1098-6596