Skip to main content
  • ASM
    • Antimicrobial Agents and Chemotheraphy
    • Applied and Environmental Mircobiology
    • Clinical Microbiology Reviews
    • Clinical and Vaccine Immunology
    • EcoSal Plus
    • Eukaryotic Cell
    • Infection and Immunity
    • Journal of Bacteriology
    • Journal of Clinical Microbiology
    • Journal of Microbiology & Biology Education
    • Journal of Virology
    • mBio
    • Microbiology and Molecular Biology Reviews
    • Microbiology Resource Announcements
    • Microbiology Spectrum
    • Molecular and Cellular Biology
    • mSphere
    • mSystems
  • Log in
  • My alerts
  • My Cart

Main menu

  • Home
  • Articles
    • Current Issue
    • Accepted Manuscripts
    • Archive
    • Minireviews
  • For Authors
    • Submit a Manuscript
    • Scope
    • Editorial Policy
    • Submission, Review, & Publication Processes
    • Organization and Format
    • Errata, Author Corrections, Retractions
    • Illustrations and Tables
    • Nomenclature
    • Abbreviations and Conventions
    • Publication Fees
    • Ethics Resources and Policies
  • About the Journal
    • About AAC
    • Editor in Chief
    • Editorial Board
    • For Reviewers
    • For the Media
    • For Librarians
    • For Advertisers
    • Alerts
    • RSS
    • FAQ
  • Subscribe
    • Members
    • Institutions
  • ASM
    • Antimicrobial Agents and Chemotheraphy
    • Applied and Environmental Mircobiology
    • Clinical Microbiology Reviews
    • Clinical and Vaccine Immunology
    • EcoSal Plus
    • Eukaryotic Cell
    • Infection and Immunity
    • Journal of Bacteriology
    • Journal of Clinical Microbiology
    • Journal of Microbiology & Biology Education
    • Journal of Virology
    • mBio
    • Microbiology and Molecular Biology Reviews
    • Microbiology Resource Announcements
    • Microbiology Spectrum
    • Molecular and Cellular Biology
    • mSphere
    • mSystems

User menu

  • Log in
  • My alerts
  • My Cart

Search

  • Advanced search
Antimicrobial Agents and Chemotherapy
publisher-logosite-logo

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Accepted Manuscripts
    • Archive
    • Minireviews
  • For Authors
    • Submit a Manuscript
    • Scope
    • Editorial Policy
    • Submission, Review, & Publication Processes
    • Organization and Format
    • Errata, Author Corrections, Retractions
    • Illustrations and Tables
    • Nomenclature
    • Abbreviations and Conventions
    • Publication Fees
    • Ethics Resources and Policies
  • About the Journal
    • About AAC
    • Editor in Chief
    • Editorial Board
    • For Reviewers
    • For the Media
    • For Librarians
    • For Advertisers
    • Alerts
    • RSS
    • FAQ
  • Subscribe
    • Members
    • Institutions
Mechanisms of Resistance

Biolog Phenotype Microarray Is a Tool for the Identification of Multidrug Resistance Efflux Pump Inducers

P. Blanco, F. Corona, J. L. Martínez
P. Blanco
Centro Nacional de Biotecnología, CSIC, Madrid, Spain
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
F. Corona
Centro Nacional de Biotecnología, CSIC, Madrid, Spain
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
J. L. Martínez
Centro Nacional de Biotecnología, CSIC, Madrid, Spain
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
DOI: 10.1128/AAC.01263-18
  • Article
  • Figures & Data
  • Info & Metrics
  • PDF
Loading

ABSTRACT

Multidrug resistance efflux pumps frequently present low levels of basal expression. However, antibiotic-resistant mutants that overexpress these resistance determinants are selected during infection. In addition, increased expression of efflux pumps can be induced by environmental signals/cues, which can lead to situations of transient antibiotic resistance. In this study, we have applied a novel high-throughput methodology in order to identify inducers able to trigger the expression of the Stenotrophomonas maltophilia SmeVWX and SmeYZ efflux pumps. To that end, bioreporters in which the expression of the yellow fluorescent protein (YFP) is linked to the activity of either smeVWX or smeYZ promoters were developed and used for the screening of potential inducers of the expression of these efflux pumps using Biolog phenotype microarrays. YFP production was also measured by flow cytometry, and the levels of expression of smeV and smeY in the presence of a set of selected compounds were also determined by real-time reverse transcription-PCR (RT-PCR). The expression of smeVWX was induced by iodoacetate, clioquinol, and selenite, while boric acid, erythromycin, chloramphenicol, and lincomycin triggered smeYZ expression. The susceptibility to antibiotics that are known substrates of the efflux pumps decreased in the presence of the inducers. However, the analyzed multidrug efflux systems did not contribute to S. maltophilia resistance to the studied inducers. To sum up, the use of fluorescent bioreporters in combination with Biolog plates is a valuable tool for identifying inducers of the expression of bacterial multidrug resistance efflux pumps, and likely of other bacterial systems whose expression is regulated in response to signals/cues.

FOOTNOTES

    • Received 14 June 2018.
    • Returned for modification 12 July 2018.
    • Accepted 10 August 2018.
    • Accepted manuscript posted online 20 August 2018.
  • Supplemental material for this article may be found at https://doi.org/10.1128/AAC.01263-18.

  • Copyright © 2018 American Society for Microbiology.

All Rights Reserved.

View Full Text

Log in using your username and password

Forgot your user name or password?

Log in through your institution

You may be able to gain access using your login credentials for your institution. Contact your library if you do not have a username and password.
If your organization uses OpenAthens, you can log in using your OpenAthens username and password. To check if your institution is supported, please see this list. Contact your library for more details.

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top
Download PDF
Citation Tools
Biolog Phenotype Microarray Is a Tool for the Identification of Multidrug Resistance Efflux Pump Inducers
P. Blanco, F. Corona, J. L. Martínez
Antimicrobial Agents and Chemotherapy Oct 2018, 62 (11) e01263-18; DOI: 10.1128/AAC.01263-18

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Print

Alerts
Sign In to Email Alerts with your Email Address
Email

Thank you for sharing this Antimicrobial Agents and Chemotherapy article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Biolog Phenotype Microarray Is a Tool for the Identification of Multidrug Resistance Efflux Pump Inducers
(Your Name) has forwarded a page to you from Antimicrobial Agents and Chemotherapy
(Your Name) thought you would be interested in this article in Antimicrobial Agents and Chemotherapy.
Share
Biolog Phenotype Microarray Is a Tool for the Identification of Multidrug Resistance Efflux Pump Inducers
P. Blanco, F. Corona, J. L. Martínez
Antimicrobial Agents and Chemotherapy Oct 2018, 62 (11) e01263-18; DOI: 10.1128/AAC.01263-18
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Top
  • Article
    • ABSTRACT
    • INTRODUCTION
    • RESULTS
    • DISCUSSION
    • MATERIALS AND METHODS
    • ACKNOWLEDGMENTS
    • FOOTNOTES
    • REFERENCES
  • Figures & Data
  • Info & Metrics
  • PDF

KEYWORDS

antibiotic resistance
efflux pumps
induction of resistance
phenotype microarrays
phenotypic resistance
Stenotrophomonas maltophilia

Related Articles

Cited By...

About

  • About AAC
  • Editor in Chief
  • Editorial Board
  • Policies
  • For Reviewers
  • For the Media
  • For Librarians
  • For Advertisers
  • Alerts
  • RSS
  • FAQ
  • Permissions
  • Journal Announcements

Authors

  • ASM Author Center
  • Submit a Manuscript
  • Article Types
  • Ethics
  • Contact Us

Follow #AACJournal

@ASMicrobiology

       

ASM Journals

ASM journals are the most prominent publications in the field, delivering up-to-date and authoritative coverage of both basic and clinical microbiology.

About ASM | Contact Us | Press Room

 

ASM is a member of

Scientific Society Publisher Alliance

Copyright © 2019 American Society for Microbiology | Privacy Policy | Website feedback

Print ISSN: 0066-4804; Online ISSN: 1098-6596