Skip to main content
  • ASM
    • Antimicrobial Agents and Chemotherapy
    • Applied and Environmental Microbiology
    • Clinical Microbiology Reviews
    • Clinical and Vaccine Immunology
    • EcoSal Plus
    • Eukaryotic Cell
    • Infection and Immunity
    • Journal of Bacteriology
    • Journal of Clinical Microbiology
    • Journal of Microbiology & Biology Education
    • Journal of Virology
    • mBio
    • Microbiology and Molecular Biology Reviews
    • Microbiology Resource Announcements
    • Microbiology Spectrum
    • Molecular and Cellular Biology
    • mSphere
    • mSystems
  • Log in
  • My alerts
  • My Cart

Main menu

  • Home
  • Articles
    • Current Issue
    • Accepted Manuscripts
    • COVID-19 Special Collection
    • Archive
    • Minireviews
  • For Authors
    • Submit a Manuscript
    • Scope
    • Editorial Policy
    • Submission, Review, & Publication Processes
    • Organization and Format
    • Errata, Author Corrections, Retractions
    • Illustrations and Tables
    • Nomenclature
    • Abbreviations and Conventions
    • Publication Fees
    • Ethics Resources and Policies
  • About the Journal
    • About AAC
    • Editor in Chief
    • Editorial Board
    • For Reviewers
    • For the Media
    • For Librarians
    • For Advertisers
    • Alerts
    • AAC Podcast
    • RSS
    • FAQ
  • Subscribe
    • Members
    • Institutions
  • ASM
    • Antimicrobial Agents and Chemotherapy
    • Applied and Environmental Microbiology
    • Clinical Microbiology Reviews
    • Clinical and Vaccine Immunology
    • EcoSal Plus
    • Eukaryotic Cell
    • Infection and Immunity
    • Journal of Bacteriology
    • Journal of Clinical Microbiology
    • Journal of Microbiology & Biology Education
    • Journal of Virology
    • mBio
    • Microbiology and Molecular Biology Reviews
    • Microbiology Resource Announcements
    • Microbiology Spectrum
    • Molecular and Cellular Biology
    • mSphere
    • mSystems

User menu

  • Log in
  • My alerts
  • My Cart

Search

  • Advanced search
Antimicrobial Agents and Chemotherapy
publisher-logosite-logo

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Accepted Manuscripts
    • COVID-19 Special Collection
    • Archive
    • Minireviews
  • For Authors
    • Submit a Manuscript
    • Scope
    • Editorial Policy
    • Submission, Review, & Publication Processes
    • Organization and Format
    • Errata, Author Corrections, Retractions
    • Illustrations and Tables
    • Nomenclature
    • Abbreviations and Conventions
    • Publication Fees
    • Ethics Resources and Policies
  • About the Journal
    • About AAC
    • Editor in Chief
    • Editorial Board
    • For Reviewers
    • For the Media
    • For Librarians
    • For Advertisers
    • Alerts
    • AAC Podcast
    • RSS
    • FAQ
  • Subscribe
    • Members
    • Institutions
Experimental Therapeutics

Tomatidine Is a Lead Antibiotic Molecule That Targets Staphylococcus aureus ATP Synthase Subunit C

Maxime Lamontagne Boulet, Charles Isabelle, Isabelle Guay, Eric Brouillette, Jean-Philippe Langlois, Pierre-Étienne Jacques, Sébastien Rodrigue, Ryszard Brzezinski, Pascale B. Beauregard, Kamal Bouarab, Kumaraswamy Boyapelly, Pierre-Luc Boudreault, Éric Marsault, François Malouin
Maxime Lamontagne Boulet
aCentre d'Étude et de Valorisation de la Diversité Microbienne, Département de Biologie, Faculté des Sciences, Université de Sherbrooke, Sherbrooke, Quebec, Canada
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Charles Isabelle
aCentre d'Étude et de Valorisation de la Diversité Microbienne, Département de Biologie, Faculté des Sciences, Université de Sherbrooke, Sherbrooke, Quebec, Canada
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Isabelle Guay
aCentre d'Étude et de Valorisation de la Diversité Microbienne, Département de Biologie, Faculté des Sciences, Université de Sherbrooke, Sherbrooke, Quebec, Canada
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Eric Brouillette
aCentre d'Étude et de Valorisation de la Diversité Microbienne, Département de Biologie, Faculté des Sciences, Université de Sherbrooke, Sherbrooke, Quebec, Canada
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Jean-Philippe Langlois
aCentre d'Étude et de Valorisation de la Diversité Microbienne, Département de Biologie, Faculté des Sciences, Université de Sherbrooke, Sherbrooke, Quebec, Canada
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Pierre-Étienne Jacques
aCentre d'Étude et de Valorisation de la Diversité Microbienne, Département de Biologie, Faculté des Sciences, Université de Sherbrooke, Sherbrooke, Quebec, Canada
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Sébastien Rodrigue
aCentre d'Étude et de Valorisation de la Diversité Microbienne, Département de Biologie, Faculté des Sciences, Université de Sherbrooke, Sherbrooke, Quebec, Canada
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Ryszard Brzezinski
aCentre d'Étude et de Valorisation de la Diversité Microbienne, Département de Biologie, Faculté des Sciences, Université de Sherbrooke, Sherbrooke, Quebec, Canada
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Pascale B. Beauregard
aCentre d'Étude et de Valorisation de la Diversité Microbienne, Département de Biologie, Faculté des Sciences, Université de Sherbrooke, Sherbrooke, Quebec, Canada
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Kamal Bouarab
aCentre d'Étude et de Valorisation de la Diversité Microbienne, Département de Biologie, Faculté des Sciences, Université de Sherbrooke, Sherbrooke, Quebec, Canada
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Kumaraswamy Boyapelly
bDépartement de Pharmacologie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Quebec, Canada
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Pierre-Luc Boudreault
bDépartement de Pharmacologie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Quebec, Canada
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Éric Marsault
bDépartement de Pharmacologie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Quebec, Canada
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
François Malouin
aCentre d'Étude et de Valorisation de la Diversité Microbienne, Département de Biologie, Faculté des Sciences, Université de Sherbrooke, Sherbrooke, Quebec, Canada
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for François Malouin
DOI: 10.1128/AAC.02197-17
  • Article
  • Figures & Data
  • Info & Metrics
  • PDF
Loading

Article Figures & Data

Figures

  • Tables
  • Additional Files
  • FIG 1
    • Open in new tab
    • Download powerpoint
    FIG 1

    Structures of TO and analogs used in this study. (A) TO is characterized by 6 rings, 12 stereogenic centers, a 3 β-hydroxyl group, and spiro-fused rings in the form of an aminoketal. (B) FC04-100 contains a diamine in position 3. The two epimers in position 3 were separated as major (M) and minor (m) although due to the complexity of nuclear magnetic resonance signals, their respective structures could not be unambiguously assigned. (C) TO analog FC02-190 shows an α-hydroxyl group in position 3. (D) Analog FC04-116 shows an open spiroaminoketal moiety.

  • FIG 2
    • Open in new tab
    • Download powerpoint
    FIG 2

    Amino acid sequence alignments of the ATP synthase subunit C for selected species. First, the alignments for several species of Bacillales present a consensus sequence, highlighted in green. Amino acids additionally identical to those of S. aureus are highlighted in yellow. Amino acids mutated in TO/FC04-100-resistant mutants are in red and bold characters in the S. aureus NCTC 8325 sequence. Also shown below the Bacillales consensus sequence are the alignments for some bacterial species not targeted by TO. The changes in amino acids found in TO/FC04-100-resistant S. aureus (SaR1 to SaR6) are indicated below the alignments. The essential ion-binding glutamate (aspartate in E. coli) is indicated in bold black. Changes in amino acids reported for the bedaquiline-resistant strains of Mycobacterium tuberculosis or Mycobacterium smegmatis (MyR denotes a mixture of these two species) are also indicated below the alignments (40).

  • FIG 3
    • Open in new tab
    • Download powerpoint
    FIG 3

    Monomeric and multimeric models of ATP synthase subunit C built, respectively, on homology with templates of PDB accession numbers 1WU0 and 3ZO6, using the SWISS-MODEL server. (A) Position of amino acids (in white) implicated in high-level TO resistance in the wild-type polypeptide. Essential amino acid Glu54 is in yellow. (B) Position of Ser17 mutation in SaR1. (C) Position of Cys18 mutation in SaR5. (D) Position of Leu26 mutation in SaR2, SaR3, and SaR4. (E) Position of Leu47 mutation in SaR6. (F) Overview of the multimeric assembly of ATP synthase subunit C. (G) Position of amino acids (Ala17, red; Gly18, green; Ser26, cyan; Phe47, magenta) implicated in resistance in the wild-type multimeric assembly. Glu54 is also shown in yellow. (H) Position of the Ser17 mutation in the multimeric assembly in SaR1. (I) Position of the Cys18 mutation in the multimeric assembly in SaR5. (J) Position of the Leu26 mutation in the multimeric assembly in SaR2, SaR3, and SaR4. (K) Position of the Leu47 mutation in the multimeric assembly in SaR6. The models were drawn using PyMOL software (version 1.8.7.0; DeLano Scientific, San Francisco, CA).

  • FIG 4
    • Open in new tab
    • Download powerpoint
    FIG 4

    Effect of TO and analogs on the ATP synthase activity of S. aureus. (A) Relative ATP synthase activity of the SCV ΔhemB strain in the presence of various inhibitors. The control (CTRL) represents the maximal ATP production in the absence of ATP synthase inhibitor whereas the assay performed without addition of NADH represents the minimal value. nd, not determined. (B) Relative ATP synthase activity of the SCV ΔhemB atpE mutants (SaR1, SaR4, SaR5, and SaR6) in the presence of TO. The effects of TO on the parental ΔhemB strain and the prototypical strain Newbould (WT) and on human mitochondria are also shown for comparison. (C) Correlation between TO and analogs (FcM, Fcm, FC02-190, and FC04-116). Log2 MICs and the log10 IC50s were determined in the ATP synthase assay using S. aureusΔhemB membrane vesicles. (D) ATP production (relative light units, RLU) by membrane vesicles prepared from the SCV ΔhemB atpE mutants. ATP production by the parental ΔhemB strain and the prototypical strain Newbould (WT) is also shown. In panel D, letters shared between or among the groups indicate no significant difference.

Tables

  • Figures
  • Additional Files
  • TABLE 1

    Susceptibility profile of the studied S. aureus strains and TO-resistant mutants selected after serial passage in the presence of TO or FC04-100

    Strain or clonesaMIC (μg/ml)b
    TOFcMFcmGEN
    S. aureus Newbould>128280.25
    S. aureus Newbould ΔhemB0.060.0628
    P07intR-1, -2, and -3*0.250.5–148
    P11intR-1, -2, and -3*0.25–0.50.5–148
    P20intR-1, -2, and -3*0.25–1148
    SaR1-1, -2, and -3#>64288
    SaR2-1, -2, and -3§>64288
    SaR3-1, -2, and -3#>64288
    SaR4-1, -2, and -3#>64288
    SaR5-1, -2, and -3†>6428–168–16
    SaR6-1, -2, and -3†>64288
    • ↵a Clones of S. aureus Newbould ΔhemB are indicated as follows: *, clones selected after 7, 11, or 20 passages, respectively, in the presence of TO; #, clones selected after 30 passages in the presence of TO; §, clones from a clone of S. aureus Newbould ΔhemB with low-level of resistance to TO (P07intR-1) after an additional 30 passages in the presence of TO; †, clones selected after 30 passages in the presence of FC04-100.

    • ↵b TO, tomatidine; FcM, FC04-100 major stereoisomer; Fcm, FC04-100 minor stereoisomer; GEN, gentamicin. For the MIC, the “>” sign denotes the highest concentration tested.

  • TABLE 2

    Susceptibility profile of genetically manipulated S. aureus and B. subtilis strains

    StrainMIC (μg/ml)a
    TOFcMTO (+HQNO)b
    S. aureus Newbould>6420.12
    S. aureus Newbould ΔhemB/empty vector0.060.060.06
    S. aureus Newbould ΔhemB atpE>648ND
    S. aureus Newbould ΔhemB SaR5>642>64
    B. subtilis 168>64ND0.12
    B. subtilis 168 with SaR5 atpE mutation>64ND>64
    • ↵a TO, tomatidine; FcM, FC04-100 major stereoisomer; ND, not determined. For the MIC, the “>” sign denotes the highest concentration tested.

    • ↵b HQNO was added at a fixed concentration of 10 μg/ml during the susceptibility test.

  • TABLE 3

    MIC and inhibition of ATP synthesis (IC50) by TO, TO analogs, and reference compounds for different bacterial strains and mitochondriaa

    CompoundΔhemB strainNewbouldE. coliIC50 (μg/ml) for mitochondria
    MIC (μg/ml)IC50 (μg/ml)MIC (μg/ml)IC50 (μg/ml)MIC (μg/ml)IC50 (μg/ml)
    TO0.0618.5 ± 1.9>12895.5 ± 13.7>128264.73 ± 30.8>1,024
    FcM0.0618.9 ± 3.6240.2 ± 13.832102.42 ± 16.6>1,024
    Fcm247.0 ± 9.68111.0 ± 11.364223.09 ± 45.9>1,024
    FC02-190885.1 ± 7.0>128>1,024>128>1,024>1,024
    FC04-116>128>1,024>128>1,024>128>1,024>1,024
    DCCDNDb1.44 ± 0.54ND1.32 ± 0.32ND1.62 ± 0.540.82 ± 0.17
    CCCPND1.46 ± 0.27ND6.11 ± 1.1ND2.80 ± 1.017.19 ± 2.23
    OligomycinND8.67 ± 1.9ND9.41 ± 1.5ND5.63 ± 1.235.91 ± 0.82
    Tomatine>128>1,024>128>1,024>128>1,024>1,024
    Bedaquiline>128>1,024>128>1,024>128>1,024>128
    Gentamicin8>1,0240.25>1,0241>1,024>1,024
    Levofloxacin0.25>1,0240.25>1,0240.03>1,024>1,024
    • ↵a The “>” sign denotes the highest concentration tested.

    • ↵b ND, not determined.

  • TABLE 4

    MIC and selective inhibition of ATP synthesis (IC50) by TO and TO analogs for different TO-resistant mutantsa

    CompoundSaR1-1SaR4-1SaR5-1SaR6-1
    MIC (μg/ml)IC50 (μg/ml)MIC (μg/ml)IC50 (μg/ml)MIC (μg/ml)IC50 (μg/ml)MIC (μg/ml)IC50 (μg/ml)
    TO>64>512>64>512>64>512>64>512
    FC02-190>64>512>64>512>64>512>64>512
    FcM2238 ± 22.12>5122110 ± 9.82>512
    Fcm8>5128>5128>5128>512
    • ↵a The “>” sign denotes the highest concentration tested.

Additional Files

  • Figures
  • Tables
  • Supplemental material

    • Supplemental file 1 -

      Fig. S1 and S2

      PDF, 404K

PreviousNext
Back to top
Download PDF
Citation Tools
Tomatidine Is a Lead Antibiotic Molecule That Targets Staphylococcus aureus ATP Synthase Subunit C
Maxime Lamontagne Boulet, Charles Isabelle, Isabelle Guay, Eric Brouillette, Jean-Philippe Langlois, Pierre-Étienne Jacques, Sébastien Rodrigue, Ryszard Brzezinski, Pascale B. Beauregard, Kamal Bouarab, Kumaraswamy Boyapelly, Pierre-Luc Boudreault, Éric Marsault, François Malouin
Antimicrobial Agents and Chemotherapy May 2018, 62 (6) e02197-17; DOI: 10.1128/AAC.02197-17

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Print

Alerts
Sign In to Email Alerts with your Email Address
Email

Thank you for sharing this Antimicrobial Agents and Chemotherapy article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Tomatidine Is a Lead Antibiotic Molecule That Targets Staphylococcus aureus ATP Synthase Subunit C
(Your Name) has forwarded a page to you from Antimicrobial Agents and Chemotherapy
(Your Name) thought you would be interested in this article in Antimicrobial Agents and Chemotherapy.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
Tomatidine Is a Lead Antibiotic Molecule That Targets Staphylococcus aureus ATP Synthase Subunit C
Maxime Lamontagne Boulet, Charles Isabelle, Isabelle Guay, Eric Brouillette, Jean-Philippe Langlois, Pierre-Étienne Jacques, Sébastien Rodrigue, Ryszard Brzezinski, Pascale B. Beauregard, Kamal Bouarab, Kumaraswamy Boyapelly, Pierre-Luc Boudreault, Éric Marsault, François Malouin
Antimicrobial Agents and Chemotherapy May 2018, 62 (6) e02197-17; DOI: 10.1128/AAC.02197-17
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Top
  • Article
    • ABSTRACT
    • INTRODUCTION
    • RESULTS
    • DISCUSSION
    • MATERIALS AND METHODS
    • ACKNOWLEDGMENTS
    • FOOTNOTES
    • REFERENCES
  • Figures & Data
  • Info & Metrics
  • PDF

KEYWORDS

ATP synthase
small-colony variant
Staphylococcus aureus
new target
tomatidine

Related Articles

Cited By...

About

  • About AAC
  • Editor in Chief
  • Editorial Board
  • Policies
  • For Reviewers
  • For the Media
  • For Librarians
  • For Advertisers
  • Alerts
  • AAC Podcast
  • RSS
  • FAQ
  • Permissions
  • Journal Announcements

Authors

  • ASM Author Center
  • Submit a Manuscript
  • Article Types
  • Ethics
  • Contact Us

Follow #AACJournal

@ASMicrobiology

       

ASM Journals

ASM journals are the most prominent publications in the field, delivering up-to-date and authoritative coverage of both basic and clinical microbiology.

About ASM | Contact Us | Press Room

 

ASM is a member of

Scientific Society Publisher Alliance

 

American Society for Microbiology
1752 N St. NW
Washington, DC 20036
Phone: (202) 737-3600

Copyright © 2021 American Society for Microbiology | Privacy Policy | Website feedback

Print ISSN: 0066-4804; Online ISSN: 1098-6596