Skip to main content
  • ASM
    • Antimicrobial Agents and Chemotherapy
    • Applied and Environmental Microbiology
    • Clinical Microbiology Reviews
    • Clinical and Vaccine Immunology
    • EcoSal Plus
    • Eukaryotic Cell
    • Infection and Immunity
    • Journal of Bacteriology
    • Journal of Clinical Microbiology
    • Journal of Microbiology & Biology Education
    • Journal of Virology
    • mBio
    • Microbiology and Molecular Biology Reviews
    • Microbiology Resource Announcements
    • Microbiology Spectrum
    • Molecular and Cellular Biology
    • mSphere
    • mSystems
  • Log in
  • My alerts
  • My Cart

Main menu

  • Home
  • Articles
    • Current Issue
    • Accepted Manuscripts
    • COVID-19 Special Collection
    • Archive
    • Minireviews
  • For Authors
    • Submit a Manuscript
    • Scope
    • Editorial Policy
    • Submission, Review, & Publication Processes
    • Organization and Format
    • Errata, Author Corrections, Retractions
    • Illustrations and Tables
    • Nomenclature
    • Abbreviations and Conventions
    • Publication Fees
    • Ethics Resources and Policies
  • About the Journal
    • About AAC
    • Editor in Chief
    • Editorial Board
    • For Reviewers
    • For the Media
    • For Librarians
    • For Advertisers
    • Alerts
    • AAC Podcast
    • RSS
    • FAQ
  • Subscribe
    • Members
    • Institutions
  • ASM
    • Antimicrobial Agents and Chemotherapy
    • Applied and Environmental Microbiology
    • Clinical Microbiology Reviews
    • Clinical and Vaccine Immunology
    • EcoSal Plus
    • Eukaryotic Cell
    • Infection and Immunity
    • Journal of Bacteriology
    • Journal of Clinical Microbiology
    • Journal of Microbiology & Biology Education
    • Journal of Virology
    • mBio
    • Microbiology and Molecular Biology Reviews
    • Microbiology Resource Announcements
    • Microbiology Spectrum
    • Molecular and Cellular Biology
    • mSphere
    • mSystems

User menu

  • Log in
  • My alerts
  • My Cart

Search

  • Advanced search
Antimicrobial Agents and Chemotherapy
publisher-logosite-logo

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Accepted Manuscripts
    • COVID-19 Special Collection
    • Archive
    • Minireviews
  • For Authors
    • Submit a Manuscript
    • Scope
    • Editorial Policy
    • Submission, Review, & Publication Processes
    • Organization and Format
    • Errata, Author Corrections, Retractions
    • Illustrations and Tables
    • Nomenclature
    • Abbreviations and Conventions
    • Publication Fees
    • Ethics Resources and Policies
  • About the Journal
    • About AAC
    • Editor in Chief
    • Editorial Board
    • For Reviewers
    • For the Media
    • For Librarians
    • For Advertisers
    • Alerts
    • AAC Podcast
    • RSS
    • FAQ
  • Subscribe
    • Members
    • Institutions
Experimental Therapeutics

Antimicrobial Activity of Exebacase (Lysin CF-301) against the Most Common Causes of Infective Endocarditis

Aubrey Watson, Jun Taek Oh, Karen Sauve, Patricia A. Bradford, Cara Cassino, Raymond Schuch
Aubrey Watson
aContraFect Corporation, Yonkers, New York, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Jun Taek Oh
aContraFect Corporation, Yonkers, New York, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Karen Sauve
aContraFect Corporation, Yonkers, New York, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Patricia A. Bradford
bAntimicrobial Development Specialists, LLC, Nyack, New York, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Patricia A. Bradford
Cara Cassino
aContraFect Corporation, Yonkers, New York, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Raymond Schuch
aContraFect Corporation, Yonkers, New York, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Raymond Schuch
DOI: 10.1128/AAC.01078-19
  • Article
  • Figures & Data
  • Info & Metrics
  • PDF
Loading

ABSTRACT

Exebacase, a recombinantly produced lysin (cell wall hydrolase), and comparator antibiotics were tested by the broth microdilution method against strain sets of Staphylococcus and Streptococcus spp., which are the most common causes of infective endocarditis in humans. Exebacase was active against all Staphylococcus spp. tested, including S. aureus and coagulase-negative staphylococci (MIC50/90, 0.5/1 μg/ml). Activity against Streptococcus spp. was variable, with S. pyogenes, S. agalactiae, and S. dysgalactiae (MIC50/90, 1/2 μg/ml) among the most susceptible.

TEXT

Infective endocarditis (IE) is a life-threatening disease with a poor prognosis, reflected by hospital mortality rates of up to 20 to 40% despite the use of high-dose and long-term intravenous antibiotic therapy (1, 2). Surgical intervention is frequently required in many cases to eradicate the infection and preserve cardiac function (3).

A significant challenge in the treatment of IE concerns the ability of colonizing bacteria, primarily Staphylococcus and Streptococcus spp., to adhere to cardiac surfaces and form biofilm-like vegetations which can be refractory to antibiotics and immune surveillance, resulting in persistent and relapsing infections (4–6). Current IDSA guidelines recommend either vancomycin or daptomycin for the treatment of IE caused by methicillin-resistant Staphylococcus aureus (MRSA) in adults (3, 7); however, vancomycin has been associated with poor clinical outcomes (4, 8), and daptomycin, the most recent drug approved by the U.S. Food and Drug Administration (in 2006) for S. aureus bloodstream infections (9), exhibited a clinical cure rate of 44.2% in a phase 3 trial for S. aureus bacteremia and endocarditis (10). New and more effective antimicrobial agents are required to address the challenging characteristics of bacteria in biofilm, in particular high cell densities, low growth rates, “persister” subpopulations, and other protective mechanisms (3, 4, 11).

One promising approach, now under clinical development to target bacteria growing in a biofilm, is based on a new antimicrobial class of direct lytic agents (DLAs), which includes a large family of bacteriophage-encoded cell wall hydrolases called lysins (12–14). As recombinantly expressed and purified enzymes, lysins elicit rapid bactericidal effects on specific bacterial organisms. Exebacase (formerly CF-301) is a potent antistaphylococcal lysin, with distinguishing features that include a low propensity for resistance, synergy with conventional antibiotics, no antibiotic cross-resistance, an extended postantibiotic effect, and, significantly, potent activity against Gram-positive bacteria growing in biofilms (15–21). Exebacase is, furthermore, the first DLA to report results from a phase 2 (Ph2) clinical trial, which demonstrated 42.8% higher clinical responder rates with a single dose of exebacase used in addition to standard-of-care antibiotics (SOC) versus SOC alone for the treatment of MRSA bacteremia, including endocarditis (18, 22). Exebacase represents a novel approach to treating IE caused by S. aureus that leverages both the antibiofilm and bactericidal activities of exebacase and the potent activities of antibiotics against planktonic cells.

In the present study, the in vitro activity of exebacase and comparator antibiotics (i.e., daptomycin and vancomycin) were evaluated against a range of bacterial species most commonly associated with IE (Table 1). Staphylococcus aureus is the primary cause of IE, in addition to other common pathogens such as coagulase-negative staphylococci, enterococci, viridans group streptococci, and other streptococci. Whereas the potent activity of exebacase against S. aureus is well described, only limited data exist for the other staphylococcal and streptococcal pathogens (15, 16, 21). The purpose of this study was to provide a greater understanding of exebacase activity among the main staphylococcal and streptococcal pathogens associated with IE.

View this table:
  • View inline
  • View popup
TABLE 1

Review of data from seven studies examining the causative agents of infective endocarditis in humans

The strains and isolates used in this study were acquired from collections and repositories in the United States, Europe, and Asia and were confirmed at the species level by each source. The isolates were isolated from a range of infection types, including bacteremia (and endocarditis), skin and soft tissue infections, and respiratory infections (see Tables S1 and S2 in the supplemental material). A range of infections types were included to ensure a sufficient number of isolates for each target species.

The MICs of exebacase against staphylococci were determined by broth microdilution (BMD) (23) using a nonstandard antimicrobial susceptibility testing (AST) medium comprised of cation-adjusted Mueller-Hinton broth (CAMHB) supplemented with horse serum (Sigma-Aldrich) and dithiothreitol (Sigma-Aldrich) to final concentrations of 25% and 0.5 mM, respectively. This medium, referred to as CAMHB-HSD, was approved for use in exebacase AST by the Clinical and Laboratory Standards Institute (CLSI) AST Subcommittee, based on the acceptance of quality control (QC) ranges determined for the QC strains ATCC 29213 and ATCC 29212 in CLSI M23 studies using CAMHB-HSD (24). Additional supplementation with 2.5% lysed horse red blood cells (Remel; Thermo Fisher) was included for analyses of streptococcal isolates, as recommended by the CLSI (23). Daptomycin (Sigma-Aldrich) and vancomycin hydrochloride (Sigma-Aldrich) were analyzed in parallel (using the same inoculum), following the reference BMD method for each (23).

Exebacase activity was first confirmed using sets of 73 methicillin-susceptible S. aureus (MSSA) and 74 MRSA isolates, which demonstrated MIC50/90 values of 0.5/0.5 μg/ml and 0.5/1 μg/ml and ranges of 0.25 to 1 μg/ml and 0.5 to 2 μg/ml, respectively (Table 2). Similar levels activity were next observed for each coagulase-negative staphylococcal species, including Staphylococcus epidermidis (MIC50/90 = 0.5/0.5 μg/ml), Staphylococcus lugdunensis (MIC50/90 = 1/1 μg/ml), Staphylococcus haemolyticus (MIC50/90 = 0.5/1 μg/ml), Staphylococcus capitis (MIC50/90 = 1/2 μg/ml), and Staphylococcus warneri (MIC50/90 = 0.5/1 μg/ml). Staphylococcus hominis, only rarely associated with IE (25), was tested (n = 2 strains) and demonstrated exebacase MIC values of 0.125 and 0.25 μg/ml (data not shown). Other staphylococcal species tested included Staphylococcus pseudintermedius (MIC = 0.25 μg/ml, each of n = 6 isolates), S. sciuri (MIC = 2 μg/ml, n = 3 isolates), Staphylococcus simulans (MIC = 0.125 μg/ml, n = 1 isolate), and Staphylococcus hyicus (MIC = 0.25 μg/ml, n = 1 isolate). MICs for daptomycin and vancomycin were observed with ranges of 0.125 to 2 μg/ml and 0.5 to 4 μg/ml, respectively, for all staphylococci tested, consistent with expected ranges (26, 27).

View this table:
  • View inline
  • View popup
TABLE 2

Susceptibility of Staphylococcus species to exebacase and comparator antibioticsa

The majority of viridans streptococci tested, in addition to Streptococcus pneumoniae and Enterococcus faecalis (formerly group D streptococcus), exhibited high MICs for exebacase, with values ranging up to >512 μg/ml (Table 3). Notable exceptions included Streptococcus intermedius, Streptococcus pyogenes (Lancefield group A), Streptococcus agalactiae (Lancefield group B), and Streptococcus dysgalactiae (Lancefield group G), with MIC ranges of 0.06 to 0.5, 0.5 to 4, 0.25 to 4, and 1 to 2 μg/ml, respectively. Unlike many of the viridans streptococci and E. faecalis which primarily cause subacute IE, S. intermedius (a viridans group species) and both S. agalactiae and S. dysgalactiae are, interestingly, associated with the more aggressive acute disease caused by staphylococci and resulting in rapid destruction of the endocardium (28–32).

View this table:
  • View inline
  • View popup
TABLE 3

Susceptibility of Streptococcus and Enterococcus species to exebacase and comparator antibioticsa

Overall, the exebacase data presented here demonstrated promising in vitro antimicrobial activity, with MIC values of ≤2 μg/ml against all staphylococcal and a subset of streptococcal species. Importantly, data from exposure target attainment animal studies, pharmacokinetic/pharmacodynamic modeling, and preliminary nonclinical breakpoint assessments indicate that strains with MIC values of ≤2 μg/ml are expected to be susceptible to the clinical dose of exebacase (0.25 mg/kg) studied in Ph2 (33–35). Our findings are particularly significant considering that staphylococci and streptococci are the most frequently isolated Gram-positive cocci isolated in native and prosthetic valve infections (3, 4, 36–38).

The concept of combining the potent antibiofilm and bactericidal activities of lysins with the well-understood strengths of antibiotics represents a completely novel approach that is under investigation in a Ph2 clinical trial for the treatment of S. aureus bacteremia and endocarditis with exebacase in addition to conventional antibiotics. The trial is expected to provide a proof of concept for the novel treatment approach.

ACKNOWLEDGMENTS

This study was supported by funds from ContraFect Corporation and CDMRP award W81XWH-16-1-0245.

We thank Valerie Albrecht and Bernard Beall (CDC), James Swezey (USDA), Vincent Fischetti and Mary Windels (The Rockefeller University), Lars Westblade, Amy Robertson, and Stephen Jenkins (New York Presbyterian/Weill Cornell Medical Center), Elisabeth Inganäs (CCUG), Hanna Hintze (DSMZ), Els Vercoutere (Leibniz Institut, BCCM/LMG), and Kazuhiko Nakano (Osaka University) for kind help with acquiring strains. We thank Temima Yellin for assistance in MIC testing.

FOOTNOTES

    • Received 30 May 2019.
    • Returned for modification 21 June 2019.
    • Accepted 16 July 2019.
    • Accepted manuscript posted online 22 July 2019.
  • Supplemental material for this article may be found at https://doi.org/10.1128/AAC.01078-19.

  • Copyright © 2019 American Society for Microbiology.

All Rights Reserved.

REFERENCES

  1. 1.↵
    1. Cresti A,
    2. Chiavarelli M,
    3. Scalese M,
    4. Nencioni C,
    5. Valentini S,
    6. Guerrini F,
    7. D’Aiello I,
    8. Picchi A,
    9. De Sensi F,
    10. Habib G
    . 2017. Epidemiological and mortality trends in infective endocarditis, a 17-year population-based prospective study. Cardiovasc Diagn Ther 7:27–35. doi:10.21037/cdt.2016.08.09.
    OpenUrlCrossRef
  2. 2.↵
    1. Murdoch DR,
    2. Corey GR,
    3. Hoen B,
    4. Miro JM,
    5. Fowler VG, Jr,
    6. Bayer AS,
    7. Karchmer AW,
    8. Olaison L,
    9. Pappas PA,
    10. Moreillon P,
    11. Chambers ST,
    12. Chu VH,
    13. Falco V,
    14. Holland DJ,
    15. Jones P,
    16. Klein JL,
    17. Raymond NJ,
    18. Read KM,
    19. Tripodi MF,
    20. Utili R,
    21. Wang A,
    22. Woods CW,
    23. Cabell CH
    , International Collaboration on Endocarditis-Prospective Cohort Study Investigators. 2009. Clinical presentation, etiology, and outcome of infective endocarditis in the 21st century: the International Collaboration on Endocarditis-Prospective Cohort Study. Arch Intern Med 169:463–473. doi:10.1001/archinternmed.2008.603.
    OpenUrlCrossRefPubMedWeb of Science
  3. 3.↵
    1. Baddour LM,
    2. Wilson WR,
    3. Bayer AS,
    4. Fowler VG, Jr,
    5. Tleyjeh IM,
    6. Rybak MJ,
    7. Barsic B,
    8. Lockhart PB,
    9. Gewitz MH,
    10. Levison ME,
    11. Bolger AF,
    12. Steckelberg JM,
    13. Baltimore RS,
    14. Fink AM,
    15. O’Gara P,
    16. Taubert KA
    . 2015. Infective endocarditis in adults: diagnosis, antimicrobial therapy, and management of complications: a scientific statement for healthcare professionals from the American Heart Association. Circulation 132:1435–1486. doi:10.1161/CIR.0000000000000296.
    OpenUrlAbstract/FREE Full Text
  4. 4.↵
    1. Holland TL,
    2. Baddour LM,
    3. Bayer AS,
    4. Hoen B,
    5. Miro JM,
    6. Fowler VG, Jr
    . 2016. Infective endocarditis. Nat Rev Dis Primers 2:16059. doi:10.1038/nrdp.2016.59.
    OpenUrlCrossRef
  5. 5.↵
    1. Elgharably H,
    2. Hussain ST,
    3. Shrestha NK,
    4. Blackstone EH,
    5. Pettersson GB
    . 2016. Current hypotheses in cardiac surgery: biofilm in infective endocarditis. Semin Thorac Cardiovasc Surg 28:56–59. doi:10.1053/j.semtcvs.2015.12.005.
    OpenUrlCrossRef
  6. 6.↵
    1. Kim W,
    2. Hendricks GL,
    3. Tori K,
    4. Fuchs BB,
    5. Mylonakis E
    . 2018. Strategies against methicillin-resistant Staphylococcus aureus persisters. Future Med Chem 10:779–794. doi:10.4155/fmc-2017-0199.
    OpenUrlCrossRef
  7. 7.↵
    1. Liu C,
    2. Bayer A,
    3. Cosgrove SE,
    4. Daum RS,
    5. Fridkin SK,
    6. Gorwitz RJ,
    7. Kaplan SL,
    8. Karchmer AW,
    9. Levine DP,
    10. Murray BE,
    11. J Rybak M,
    12. Talan DA,
    13. Chambers HF
    , Infectious Diseases Society of America. 2011. Clinical practice guidelines by the Infectious Diseases Society of America for the treatment of methicillin-resistant Staphylococcus aureus infections in adults and children. Clin Infect Dis 52:e18–55. doi:10.1093/cid/ciq146.
    OpenUrlCrossRefPubMedWeb of Science
  8. 8.↵
    1. McConeghy KW,
    2. Bleasdale SC,
    3. Rodvold KA
    . 2013. The empirical combination of vancomycin and a beta-lactam for staphylococcal bacteremia. Clin Infect Dis 57:1760–1765. doi:10.1093/cid/cit560.
    OpenUrlCrossRefPubMed
  9. 9.↵
    1. Bamberger DM
    . 2007. Bacteremia and endocarditis due to methicillin-resistant Staphylococcus aureus: the potential role of daptomycin. Ther Clin Risk Manag 3:675–684.
    OpenUrlPubMed
  10. 10.↵
    1. Fowler VG, Jr,
    2. Boucher HW,
    3. Corey GR,
    4. Abrutyn E,
    5. Karchmer AW,
    6. Rupp ME,
    7. Levine DP,
    8. Chambers HF,
    9. Tally FP,
    10. Vigliani GA,
    11. Cabell CH,
    12. Link AS,
    13. DeMeyer I,
    14. Filler SG,
    15. Zervos M,
    16. Cook P,
    17. Parsonnet J,
    18. Bernstein JM,
    19. Price CS,
    20. Forrest GN,
    21. Fatkenheuer G,
    22. Gareca M,
    23. Rehm SJ,
    24. Brodt HR,
    25. Tice A,
    26. Cosgrove SE
    , S. aureus Endocarditis and Bacteremia Study Group. 2006. Daptomycin versus standard therapy for bacteremia and endocarditis caused by Staphylococcus aureus. N Engl J Med 355:653–665. doi:10.1056/NEJMoa053783.
    OpenUrlCrossRefPubMedWeb of Science
  11. 11.↵
    1. Cahill TJ,
    2. Baddour LM,
    3. Habib G,
    4. Hoen B,
    5. Salaun E,
    6. Pettersson GB,
    7. Schafers HJ,
    8. Prendergast BD
    . 2017. Challenges in infective endocarditis. J Am Coll Cardiol 69:325–344. doi:10.1016/j.jacc.2016.10.066.
    OpenUrlFREE Full Text
  12. 12.↵
    1. Nelson DC,
    2. Schmelcher M,
    3. Rodriguez-Rubio L,
    4. Klumpp J,
    5. Pritchard DG,
    6. Dong S,
    7. Donovan DM
    . 2012. Endolysins as antimicrobials. Adv Virus Res 83:299–365. doi:10.1016/B978-0-12-394438-2.00007-4.
    OpenUrlCrossRefPubMedWeb of Science
  13. 13.↵
    1. Wittekind M,
    2. Schuch R
    . 2016. Cell wall hydrolases and antibiotics: exploiting synergy to create efficacious new antimicrobial treatments. Curr Opin Microbiol 33:18–24. doi:10.1016/j.mib.2016.05.006.
    OpenUrlCrossRef
  14. 14.↵
    1. Fischetti VA,
    2. Nelson D,
    3. Schuch R
    . 2006. Reinventing phage therapy: are the parts greater than the sum? Nat Biotechnol 24:1508–1511. doi:10.1038/nbt1206-1508.
    OpenUrlCrossRefPubMedWeb of Science
  15. 15.↵
    1. Schuch R,
    2. Lee HM,
    3. Schneider BC,
    4. Sauve KL,
    5. Law C,
    6. Khan BK,
    7. Rotolo JA,
    8. Horiuchi Y,
    9. Couto DE,
    10. Raz A,
    11. Fischetti VA,
    12. Huang DB,
    13. Nowinski RC,
    14. Wittekind M
    . 2014. Combination therapy with lysin CF-301 and antibiotic is superior to antibiotic alone for treating methicillin-resistant Staphylococcus aureus-induced murine bacteremia. J Infect Dis 209:1469–1478. doi:10.1093/infdis/jit637.
    OpenUrlCrossRefPubMed
  16. 16.↵
    1. Indiani C,
    2. Sauve K,
    3. Raz A,
    4. Abdelhady W,
    5. Xiong YQ,
    6. Cassino C,
    7. Bayer AS,
    8. Schuch R
    . 2019. The anti-staphylococcal lysin, CF-301, activates key host factors in human blood to potentiate MRSA bacteriolysis. Antimicrob Agents Chemother 63:e02291-18. doi:10.1128/AAC.02291-18.
    OpenUrlAbstract/FREE Full Text
  17. 17.↵
    1. Oh JT,
    2. Cassino C,
    3. Schuch R
    . 2019. Postantibiotic and sub-MIC effects of exebacase (lysin CF-301) enhance antimicrobial activity against Staphylococcus aureus. Antimicrob Agents Chemother 63:e02616-18. doi:10.1128/AAC.02616-18.
    OpenUrlAbstract/FREE Full Text
  18. 18.↵
    1. Fowler VG,
    2. Das A,
    3. Lipka J,
    4. Schuch R,
    5. Cassino C
    . 2019. Exebacase (lysin CF-301) improved clinical responder rates in methicillin-resistant Staphylococcus aureus bacteremia and endocarditis compared to standard of care antibiotics alone in a first-in-patient phase 2 study, abstr L0012. European Congress of Clinical Microbiology and Infectious Diseases, Amsterdam, Netherlands.
  19. 19.↵
    1. Oh J,
    2. Abdelhady W,
    3. Xiong YQ,
    4. Jones S,
    5. Cassino C,
    6. Bayer AS,
    7. Schuch R
    . 2018. Lysin CF-301 administered in addition to vancomycin (VAN) suppresses the emergence of reduced susceptibilities to VAN within cardiac vegetations in a rabbit model of MRSA infective endocarditis (IE), abstr Sunday-535. ASM Microbe, Atlanta, GA.
  20. 20.↵
    1. Oh J,
    2. Schuch R
    . 2017. Low propensity of resistance development in vitro in Staphylococcus aureus with lysin CF-301, abstr Friday-330. ASM Microbe, New Orleans, LA.
  21. 21.↵
    1. Schuch R,
    2. Khan BK,
    3. Raz A,
    4. Rotolo JA,
    5. Wittekind M
    . 2017. Bacteriophage lysin CF-301, a potent antistaphylococcal biofilm agent. Antimicrob Agents Chemother 61:e02666-16.
  22. 22.↵
    ClinicalTrials.gov. 2017. Safety, efficacy, and pharmacokinetics of CF-301 versus placebo in addition to antibacterial therapy for treatment of S. aureus bacteremia. https://clinicaltrials.gov/ct2/show/NCT03163446.
  23. 23.↵
    CLSI. 2015. Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically, 10th ed. Clinical and Laboratory Standards Institute, Wayne, PA.
  24. 24.↵
    1. Traczewski MM,
    2. Oh J,
    3. Schuch R
    . 2017. Quality control studies of CF-301 versus Staphylococcus aureus ATCC 29213 and Enterococcus faecalis ATCC 29212, abstr Friday-961. ASM Microbe, New Orleans, LA.
  25. 25.↵
    1. Petti CA,
    2. Simmon KE,
    3. Miro JM,
    4. Hoen B,
    5. Marco F,
    6. Chu VH,
    7. Athan E,
    8. Bukovski S,
    9. Bouza E,
    10. Bradley S,
    11. Fowler VG,
    12. Giannitsioti E,
    13. Gordon D,
    14. Reinbott P,
    15. Korman T,
    16. Lang S,
    17. Garcia-de-la-Maria C,
    18. Raglio A,
    19. Morris AJ,
    20. Plesiat P,
    21. Ryan S,
    22. Doco-Lecompte T,
    23. Tripodi F,
    24. Utili R,
    25. Wray D,
    26. Federspiel JJ,
    27. Boisson K,
    28. Reller LB,
    29. Murdoch DR,
    30. Woods CW
    , International Collaboration On Endocarditis-Microbiology Investigators. 2008. Genotypic diversity of coagulase-negative staphylococci causing endocarditis: a global perspective. J Clin Microbiol 46:1780–1784. doi:10.1128/JCM.02405-07.
    OpenUrlAbstract/FREE Full Text
  26. 26.↵
    1. Sader HS,
    2. Mendes RE,
    3. Pfaller MA,
    4. Flamm RK
    . 2019. Antimicrobial activity of dalbavancin tested against Gram-positive organisms isolated from patients with infective endocarditis in US and European medical centres. J Antimicrob Chemother doi:10.1093/jac/dkz006.
    OpenUrlCrossRef
  27. 27.↵
    1. Pfaller MA,
    2. Flamm RK,
    3. Castanheira M,
    4. Sader HS,
    5. Mendes RE
    . 2018. Dalbavancin in-vitro activity obtained against Gram-positive clinical isolates causing bone and joint infections in US and European hospitals (2011-2016). Int J Antimicrob Agents 51:608–611. doi:10.1016/j.ijantimicag.2017.12.011.
    OpenUrlCrossRef
  28. 28.↵
    1. Cunha BA,
    2. D’Elia AA,
    3. Pawar N,
    4. Schoch P
    . 2010. Viridans streptococcal (Streptococcus intermedius) mitral valve subacute bacterial endocarditis (SBE) in a patient with mitral valve prolapse after a dental procedure: the importance of antibiotic prophylaxis. Heart Lung 39:64–72. doi:10.1016/j.hrtlng.2009.01.004.
    OpenUrlCrossRefPubMedWeb of Science
  29. 29.↵
    1. McDonald JR
    . 2009. Acute infective endocarditis. Infect Dis Clin North Am 23:643–664. doi:10.1016/j.idc.2009.04.013.
    OpenUrlCrossRefPubMed
  30. 30.↵
    1. Abdelghany M,
    2. Schenfeld L
    . 2014. Group B streptococcal infective endocarditis. J Infect Public Health 7:237–239. doi:10.1016/j.jiph.2014.01.006.
    OpenUrlCrossRef
  31. 31.↵
    1. Lother SA,
    2. Jassal DS,
    3. Lagace-Wiens P,
    4. Keynan Y
    . 2017. Emerging group C and group G streptococcal endocarditis: a Canadian perspective. Int J Infect Dis 65:128–132. doi:10.1016/j.ijid.2017.10.018.
    OpenUrlCrossRef
  32. 32.↵
    1. Dahl A,
    2. Bruun NE
    . 2013. Enterococcus faecalis infective endocarditis: focus on clinical aspects. Expert Rev Cardiovasc Ther 11:1247–1257. doi:10.1586/14779072.2013.832482.
    OpenUrlCrossRefPubMed
  33. 33.↵
    1. Cassino C,
    2. Murphy G,
    3. Boyle J,
    4. Rotolo J,
    5. Wittekind M
    . 2016. Results of the first in human study of lysin CF-301 evaluating the safety, tolerability and pharmacokinetic profile in healthy volunteers, abstr EVLB62. ECCMID, Amsterdam, Netherlands.
  34. 34.↵
    1. Ghahramani P,
    2. Khariton T,
    3. Schuch R,
    4. Rotolo JA,
    5. Ramirez RA,
    6. Wittekind M
    . 2016. Pharmacokinetic indices driving antibacterial efficacy of CF-301: a novel first-in-class lysin, abstr W-59. American Conference on Pharmacometrics, Bellevue, WA.
  35. 35.↵
    1. Rotolo J,
    2. Ramirez RA,
    3. R S,
    4. Machacek M,
    5. Khariton T,
    6. Ghahramani P,
    7. Wittekind M
    . 2016. PK-PD driver of efficacy for CF-301, a novel anti-staphylococcal lysin: implications for human target dose, abstr LB-053. ASM Microbe, Boston, MA.
  36. 36.↵
    1. Duval X,
    2. Delahaye F,
    3. Alla F,
    4. Tattevin P,
    5. Obadia JF,
    6. Le Moing V,
    7. Doco-Lecompte T,
    8. Celard M,
    9. Poyart C,
    10. Strady C,
    11. Chirouze C,
    12. Bes M,
    13. Cambau E,
    14. Iung B,
    15. Selton-Suty C,
    16. Hoen B,
    17. Group AS
    . 2012. Temporal trends in infective endocarditis in the context of prophylaxis guideline modifications: three successive population-based surveys. J Am Coll Cardiol 59:1968–1976. doi:10.1016/j.jacc.2012.02.029.
    OpenUrlFREE Full Text
  37. 37.↵
    1. Benito N,
    2. Miro JM,
    3. de LE,
    4. Cabell CH,
    5. del Rio A,
    6. Altclas J,
    7. Commerford P,
    8. Delahaye F,
    9. Dragulescu S,
    10. Giamarellou H,
    11. Habib G,
    12. Kamarulzaman A,
    13. Kumar AS,
    14. Nacinovich FM,
    15. Suter F,
    16. Tribouilloy C,
    17. Venugopal K,
    18. Moreno A,
    19. Fowler VG, Jr
    , ICE-PES Investigators. 2009. Health care-associated native valve endocarditis: importance of non-nosocomial acquisition. Ann Intern Med 150:586–594. doi:10.7326/0003-4819-150-9-200905050-00004.
    OpenUrlCrossRefPubMedWeb of Science
  38. 38.↵
    1. Yang E,
    2. Frazee BW
    . 2018. Infective endocarditis. Emerg Med Clin North Am 36:645–663. doi:10.1016/j.emc.2018.06.002.
    OpenUrlCrossRef
  39. 39.
    1. Yuan SM
    . 2014. Right-sided infective endocarditis: recent epidemiologic changes. Int J Clin Exp Med 7:199–218.
    OpenUrlPubMed
  40. 40.
    1. Farag M,
    2. Borst T,
    3. Sabashnikov A,
    4. Zeriouh M,
    5. Schmack B,
    6. Arif R,
    7. Beller CJ,
    8. Popov AF,
    9. Kallenbach K,
    10. Ruhparwar A,
    11. Dohmen PM,
    12. Szabo G,
    13. Karck M,
    14. Weymann A
    . 2017. Surgery for infective endocarditis: outcomes and predictors of mortality in 360 consecutive patients. Med Sci Monit 23:3617–3626. doi:10.12659/msm.902340.
    OpenUrlCrossRef
  41. 41.
    1. Munoz P,
    2. Kestler M,
    3. De Alarcon A,
    4. Miro JM,
    5. Bermejo J,
    6. Rodriguez-Abella H,
    7. Farinas MC,
    8. Cobo Belaustegui M,
    9. Mestres C,
    10. Llinares P,
    11. Goenaga M,
    12. Navas E,
    13. Oteo JA,
    14. Tarabini P,
    15. Bouza E
    , Spanish Collaboration on Endocarditis-Grupo de Apoyo al Manejo de la Endocarditis Infecciosa en España. 2015. Current epidemiology and outcome of infective endocarditis: a multicenter, prospective, cohort study. Medicine 94:e1816. doi:10.1097/MD.0000000000001816.
    OpenUrlCrossRefPubMed
  42. 42.
    1. Xu H,
    2. Cai S,
    3. Dai H
    . 2016. Characteristics of infective endocarditis in a tertiary hospital in East China. PLoS One 11:e0166764. doi:10.1371/journal.pone.0166764.
    OpenUrlCrossRef
  43. 43.
    1. Selton-Suty C,
    2. Celard M,
    3. Le Moing V,
    4. Doco-Lecompte T,
    5. Chirouze C,
    6. Iung B,
    7. Strady C,
    8. Revest M,
    9. Vandenesch F,
    10. Bouvet A,
    11. Delahaye F,
    12. Alla F,
    13. Duval X,
    14. Hoen B,
    15. Group AS
    . 2012. Preeminence of Staphylococcus aureus in infective endocarditis: a 1-year population-based survey. Clin Infect Dis 54:1230–1239. doi:10.1093/cid/cis199.
    OpenUrlCrossRefPubMed
  44. 44.
    1. Yombi JC,
    2. Yuma SN,
    3. Pasquet A,
    4. Astarci P,
    5. Robert A,
    6. Rodriguez HV
    . 2017. Staphylococcal versus streptococcal infective endocarditis in a tertiary hospital in Belgium: epidemiology, clinical characteristics and outcome. Acta Clin Belgium 72:417–423. doi:10.1080/17843286.2017.1309341.
    OpenUrlCrossRef
  45. 45.
    1. Kuvhenguhwa MS,
    2. Belgrave KO,
    3. Shah SU,
    4. Bayer AS,
    5. Miller LG
    . 2017. A case of early prosthetic valve endocarditis caused by Staphylococcus warneri in a patient presenting with congestive heart failure. Cardiol Res 8:236–240. doi:10.14740/cr588w.
    OpenUrlCrossRef
  46. 46.
    1. Kim SL,
    2. Gordon SM,
    3. Shrestha NK
    . 2018. Distribution of streptococcal groups causing infective endocarditis: a descriptive study. Diagn Microbiol Infect Dis 91:269–272. doi:10.1016/j.diagmicrobio.2018.02.015.
    OpenUrlCrossRef
  47. 47.
    1. Naveen Kumar V,
    2. van der Linden M,
    3. Menon T,
    4. Nitsche-Schmitz DP
    . 2014. Viridans and bovis group streptococci that cause infective endocarditis in two regions with contrasting epidemiology. Int J Med Microbiol 304:262–268. doi:10.1016/j.ijmm.2013.10.004.
    OpenUrlCrossRefPubMed
  48. 48.
    1. Dadon Z,
    2. Cohen A,
    3. Szterenlicht YM,
    4. Assous MV,
    5. Barzilay Y,
    6. Raveh-Brawer D,
    7. Yinnon AM,
    8. Munter G
    . 2017. Spondylodiskitis and endocarditis due to Streptococcus gordonii. Ann Clin Microbiol Antimicrob 16:68. doi:10.1186/s12941-017-0243-8.
    OpenUrlCrossRef
PreviousNext
Back to top
Download PDF
Citation Tools
Antimicrobial Activity of Exebacase (Lysin CF-301) against the Most Common Causes of Infective Endocarditis
Aubrey Watson, Jun Taek Oh, Karen Sauve, Patricia A. Bradford, Cara Cassino, Raymond Schuch
Antimicrobial Agents and Chemotherapy Sep 2019, 63 (10) e01078-19; DOI: 10.1128/AAC.01078-19

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Print

Alerts
Sign In to Email Alerts with your Email Address
Email

Thank you for sharing this Antimicrobial Agents and Chemotherapy article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Antimicrobial Activity of Exebacase (Lysin CF-301) against the Most Common Causes of Infective Endocarditis
(Your Name) has forwarded a page to you from Antimicrobial Agents and Chemotherapy
(Your Name) thought you would be interested in this article in Antimicrobial Agents and Chemotherapy.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
Antimicrobial Activity of Exebacase (Lysin CF-301) against the Most Common Causes of Infective Endocarditis
Aubrey Watson, Jun Taek Oh, Karen Sauve, Patricia A. Bradford, Cara Cassino, Raymond Schuch
Antimicrobial Agents and Chemotherapy Sep 2019, 63 (10) e01078-19; DOI: 10.1128/AAC.01078-19
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Top
  • Article
    • ABSTRACT
    • TEXT
    • ACKNOWLEDGMENTS
    • FOOTNOTES
    • REFERENCES
  • Figures & Data
  • Info & Metrics
  • PDF

KEYWORDS

Staphylococcus
Streptococcus
antimicrobial activity
exebacase
infective endocarditis
lysin

Related Articles

Cited By...

About

  • About AAC
  • Editor in Chief
  • Editorial Board
  • Policies
  • For Reviewers
  • For the Media
  • For Librarians
  • For Advertisers
  • Alerts
  • AAC Podcast
  • RSS
  • FAQ
  • Permissions
  • Journal Announcements

Authors

  • ASM Author Center
  • Submit a Manuscript
  • Article Types
  • Ethics
  • Contact Us

Follow #AACJournal

@ASMicrobiology

       

ASM Journals

ASM journals are the most prominent publications in the field, delivering up-to-date and authoritative coverage of both basic and clinical microbiology.

About ASM | Contact Us | Press Room

 

ASM is a member of

Scientific Society Publisher Alliance

 

American Society for Microbiology
1752 N St. NW
Washington, DC 20036
Phone: (202) 737-3600

Copyright © 2021 American Society for Microbiology | Privacy Policy | Website feedback

Print ISSN: 0066-4804; Online ISSN: 1098-6596