Skip to main content
  • ASM
    • Antimicrobial Agents and Chemotherapy
    • Applied and Environmental Microbiology
    • Clinical Microbiology Reviews
    • Clinical and Vaccine Immunology
    • EcoSal Plus
    • Eukaryotic Cell
    • Infection and Immunity
    • Journal of Bacteriology
    • Journal of Clinical Microbiology
    • Journal of Microbiology & Biology Education
    • Journal of Virology
    • mBio
    • Microbiology and Molecular Biology Reviews
    • Microbiology Resource Announcements
    • Microbiology Spectrum
    • Molecular and Cellular Biology
    • mSphere
    • mSystems
  • Log in
  • My alerts
  • My Cart

Main menu

  • Home
  • Articles
    • Current Issue
    • Accepted Manuscripts
    • COVID-19 Special Collection
    • Archive
    • Minireviews
  • For Authors
    • Submit a Manuscript
    • Scope
    • Editorial Policy
    • Submission, Review, & Publication Processes
    • Organization and Format
    • Errata, Author Corrections, Retractions
    • Illustrations and Tables
    • Nomenclature
    • Abbreviations and Conventions
    • Publication Fees
    • Ethics Resources and Policies
  • About the Journal
    • About AAC
    • Editor in Chief
    • Editorial Board
    • For Reviewers
    • For the Media
    • For Librarians
    • For Advertisers
    • Alerts
    • AAC Podcast
    • RSS
    • FAQ
  • Subscribe
    • Members
    • Institutions
  • ASM
    • Antimicrobial Agents and Chemotherapy
    • Applied and Environmental Microbiology
    • Clinical Microbiology Reviews
    • Clinical and Vaccine Immunology
    • EcoSal Plus
    • Eukaryotic Cell
    • Infection and Immunity
    • Journal of Bacteriology
    • Journal of Clinical Microbiology
    • Journal of Microbiology & Biology Education
    • Journal of Virology
    • mBio
    • Microbiology and Molecular Biology Reviews
    • Microbiology Resource Announcements
    • Microbiology Spectrum
    • Molecular and Cellular Biology
    • mSphere
    • mSystems

User menu

  • Log in
  • My alerts
  • My Cart

Search

  • Advanced search
Antimicrobial Agents and Chemotherapy
publisher-logosite-logo

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Accepted Manuscripts
    • COVID-19 Special Collection
    • Archive
    • Minireviews
  • For Authors
    • Submit a Manuscript
    • Scope
    • Editorial Policy
    • Submission, Review, & Publication Processes
    • Organization and Format
    • Errata, Author Corrections, Retractions
    • Illustrations and Tables
    • Nomenclature
    • Abbreviations and Conventions
    • Publication Fees
    • Ethics Resources and Policies
  • About the Journal
    • About AAC
    • Editor in Chief
    • Editorial Board
    • For Reviewers
    • For the Media
    • For Librarians
    • For Advertisers
    • Alerts
    • AAC Podcast
    • RSS
    • FAQ
  • Subscribe
    • Members
    • Institutions
Pharmacology

Development of Neutropenic Murine Models of Iron Overload and Depletion To Study the Efficacy of Siderophore-Antibiotic Conjugates

James M. Kidd, Kamilia Abdelraouf, David P. Nicolau
James M. Kidd
aCenter for Anti-Infective Research and Development, Hartford Hospital, Hartford, Connecticut, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Kamilia Abdelraouf
aCenter for Anti-Infective Research and Development, Hartford Hospital, Hartford, Connecticut, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
David P. Nicolau
aCenter for Anti-Infective Research and Development, Hartford Hospital, Hartford, Connecticut, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
DOI: 10.1128/AAC.01961-19
  • Article
  • Figures & Data
  • Info & Metrics
  • PDF
Loading

ABSTRACT

Siderophore-antibiotic conjugates have increased in vitro activity in low-iron environments where bacteria express siderophores and associated transporters. The host immune hypoferremic response reduces iron availability to bacteria; however, patients with iron overload or deficiency may have altered ability to restrict iron, which may affect the efficacy of siderophore-antibiotic conjugates. In vivo models of infection with iron overload and deficiency are needed to perform this assessment. The standard neutropenic murine thigh infection model was supplemented with iron-altering treatments: iron dextran at 100 mg/kg of body weight daily for 14 days to load iron or deferoxamine at 100 mg/kg daily plus a low-iron diet for up to 30 days to deplete iron. Human-simulated regimens of cefiderocol and meropenem were administered in both models to assess any impact of iron alteration on plasma pharmacokinetics. Median iron in overloaded mice was significantly higher than that of controls in plasma (1,657 versus 336 μg/dl; P < 0.001), liver (2,133 versus 11 μg/g; P < 0.001), and spleen (473 versus 144 μg/g; P < 0.001). At 30 days, depleted mice had significantly lower iron than controls in liver (2.4 versus 6.5 μg/g; P < 0.001) and spleen (72 versus 133 μg/g; P = 0.029) but not plasma (351 versus 324 μg/dl; P = 0.95). Cefiderocol and meropenem plasma concentrations were similar in iron overloaded and control mice but varied in iron-depleted mice. The iron-overloaded murine thigh infection model was established, and human-simulated regimens of cefiderocol and meropenem were validated therein. While deferoxamine successfully reduced liver and splenic iron, this depleting treatment altered the pharmacokinetics of both antimicrobials.

FOOTNOTES

    • Received 28 September 2019.
    • Accepted 20 October 2019.
    • Accepted manuscript posted online 28 October 2019.
  • For a companion article on this topic, see https://doi.org/10.1128/AAC.01767-19.

  • Copyright © 2019 American Society for Microbiology.

All Rights Reserved.

View Full Text
PreviousNext
Back to top
Download PDF
Citation Tools
Development of Neutropenic Murine Models of Iron Overload and Depletion To Study the Efficacy of Siderophore-Antibiotic Conjugates
James M. Kidd, Kamilia Abdelraouf, David P. Nicolau
Antimicrobial Agents and Chemotherapy Dec 2019, 64 (1) e01961-19; DOI: 10.1128/AAC.01961-19

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Print

Alerts
Sign In to Email Alerts with your Email Address
Email

Thank you for sharing this Antimicrobial Agents and Chemotherapy article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Development of Neutropenic Murine Models of Iron Overload and Depletion To Study the Efficacy of Siderophore-Antibiotic Conjugates
(Your Name) has forwarded a page to you from Antimicrobial Agents and Chemotherapy
(Your Name) thought you would be interested in this article in Antimicrobial Agents and Chemotherapy.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
Development of Neutropenic Murine Models of Iron Overload and Depletion To Study the Efficacy of Siderophore-Antibiotic Conjugates
James M. Kidd, Kamilia Abdelraouf, David P. Nicolau
Antimicrobial Agents and Chemotherapy Dec 2019, 64 (1) e01961-19; DOI: 10.1128/AAC.01961-19
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Top
  • Article
    • ABSTRACT
    • TEXT
    • RESULTS
    • DISCUSSION
    • MATERIALS AND METHODS
    • ACKNOWLEDGMENTS
    • FOOTNOTES
    • REFERENCES
  • Figures & Data
  • Info & Metrics
  • PDF

KEYWORDS

animal models
conjugation
immune response
iron regulation
pharmacokinetics
siderophores

Related Articles

Cited By...

About

  • About AAC
  • Editor in Chief
  • Editorial Board
  • Policies
  • For Reviewers
  • For the Media
  • For Librarians
  • For Advertisers
  • Alerts
  • AAC Podcast
  • RSS
  • FAQ
  • Permissions
  • Journal Announcements

Authors

  • ASM Author Center
  • Submit a Manuscript
  • Article Types
  • Ethics
  • Contact Us

Follow #AACJournal

@ASMicrobiology

       

ASM Journals

ASM journals are the most prominent publications in the field, delivering up-to-date and authoritative coverage of both basic and clinical microbiology.

About ASM | Contact Us | Press Room

 

ASM is a member of

Scientific Society Publisher Alliance

 

American Society for Microbiology
1752 N St. NW
Washington, DC 20036
Phone: (202) 737-3600

Copyright © 2021 American Society for Microbiology | Privacy Policy | Website feedback

Print ISSN: 0066-4804; Online ISSN: 1098-6596