Skip to main content
  • ASM
    • Antimicrobial Agents and Chemotherapy
    • Applied and Environmental Microbiology
    • Clinical Microbiology Reviews
    • Clinical and Vaccine Immunology
    • EcoSal Plus
    • Eukaryotic Cell
    • Infection and Immunity
    • Journal of Bacteriology
    • Journal of Clinical Microbiology
    • Journal of Microbiology & Biology Education
    • Journal of Virology
    • mBio
    • Microbiology and Molecular Biology Reviews
    • Microbiology Resource Announcements
    • Microbiology Spectrum
    • Molecular and Cellular Biology
    • mSphere
    • mSystems
  • Log in
  • My alerts
  • My Cart

Main menu

  • Home
  • Articles
    • Current Issue
    • Accepted Manuscripts
    • COVID-19 Special Collection
    • Archive
    • Minireviews
  • For Authors
    • Submit a Manuscript
    • Scope
    • Editorial Policy
    • Submission, Review, & Publication Processes
    • Organization and Format
    • Errata, Author Corrections, Retractions
    • Illustrations and Tables
    • Nomenclature
    • Abbreviations and Conventions
    • Publication Fees
    • Ethics Resources and Policies
  • About the Journal
    • About AAC
    • Editor in Chief
    • Editorial Board
    • For Reviewers
    • For the Media
    • For Librarians
    • For Advertisers
    • Alerts
    • AAC Podcast
    • RSS
    • FAQ
  • Subscribe
    • Members
    • Institutions
  • ASM
    • Antimicrobial Agents and Chemotherapy
    • Applied and Environmental Microbiology
    • Clinical Microbiology Reviews
    • Clinical and Vaccine Immunology
    • EcoSal Plus
    • Eukaryotic Cell
    • Infection and Immunity
    • Journal of Bacteriology
    • Journal of Clinical Microbiology
    • Journal of Microbiology & Biology Education
    • Journal of Virology
    • mBio
    • Microbiology and Molecular Biology Reviews
    • Microbiology Resource Announcements
    • Microbiology Spectrum
    • Molecular and Cellular Biology
    • mSphere
    • mSystems

User menu

  • Log in
  • My alerts
  • My Cart

Search

  • Advanced search
Antimicrobial Agents and Chemotherapy
publisher-logosite-logo

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Accepted Manuscripts
    • COVID-19 Special Collection
    • Archive
    • Minireviews
  • For Authors
    • Submit a Manuscript
    • Scope
    • Editorial Policy
    • Submission, Review, & Publication Processes
    • Organization and Format
    • Errata, Author Corrections, Retractions
    • Illustrations and Tables
    • Nomenclature
    • Abbreviations and Conventions
    • Publication Fees
    • Ethics Resources and Policies
  • About the Journal
    • About AAC
    • Editor in Chief
    • Editorial Board
    • For Reviewers
    • For the Media
    • For Librarians
    • For Advertisers
    • Alerts
    • AAC Podcast
    • RSS
    • FAQ
  • Subscribe
    • Members
    • Institutions
Mechanisms of Resistance

De Novo Resistance to Arg10-Teixobactin Occurs Slowly and Is Costly

Daniel G. Lloyd, Benjamin J. Schofield, Matthew R. Goddard, Edward J. Taylor
Daniel G. Lloyd
aSchool of Life Sciences, University of Lincoln, Lincoln, United Kingdom
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Benjamin J. Schofield
aSchool of Life Sciences, University of Lincoln, Lincoln, United Kingdom
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Matthew R. Goddard
aSchool of Life Sciences, University of Lincoln, Lincoln, United Kingdom
bSchool of Biological Sciences, The University of Auckland, Auckland, New Zealand
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Matthew R. Goddard
Edward J. Taylor
aSchool of Life Sciences, University of Lincoln, Lincoln, United Kingdom
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Edward J. Taylor
DOI: 10.1128/AAC.01152-20
  • Article
  • Figures & Data
  • Info & Metrics
  • PDF
Loading

ABSTRACT

Bacterial pathogens are rapidly evolving resistance to all clinically available antibiotics. One part of the solution to this complex issue is to better understand the resistance mechanisms to new and existing antibiotics. Here, we focus on two antibiotics. Teixobactin is a recently discovered promising antibiotic that is claimed to “kill pathogens without detectable resistance” (L. L. Ling, T. Schneider, A. J. Peoples, A. L. Spoering, et al., Nature 517:455–459, 2015, https://doi.org/10.1038/nature14098). Moenomycin A has been extensively used in animal husbandry for over 50 years with no meaningful antibiotic resistance arising. However, the nature, mechanisms, and consequences of the evolution of resistance to these “resistance-proof” compounds have not been investigated. Through a fusion of experimental evolution, whole-genome sequencing, and structural biology, we show that Staphylococcus aureus can develop significant resistance to both antibiotics in clinically meaningful timescales. The magnitude of evolved resistance to Arg10-teixobactin is 300-fold less than to moenomycin A over 45 days, and these are 2,500-fold and 8-fold less than evolved resistance to rifampicin (control), respectively. We have identified a core suite of key mutations, which correlate with the evolution of resistance, that are in genes involved in cell wall modulation, lipid synthesis, and energy metabolism. We show the evolution of resistance to these antimicrobials translates into significant cross-resistance against other clinically relevant antibiotics for moenomycin A but not Arg10-teixobactin. Lastly, we show that resistance is rapidly lost in the absence of antibiotic selection, especially for Arg10-teixobactin. These findings indicate that teixobactin is worth pursuing for clinical applications and provide evidence to inform strategies for future compound development and clinical management.

FOOTNOTES

    • Received 21 July 2020.
    • Returned for modification 20 August 2020.
    • Accepted 2 October 2020.
    • Accepted manuscript posted online 12 October 2020.
  • Supplemental material is available online only.

  • Copyright © 2020 American Society for Microbiology.

All Rights Reserved.

View Full Text

Log in using your username and password

Forgot your user name or password?

Log in through your institution

You may be able to gain access using your login credentials for your institution. Contact your library if you do not have a username and password.
If your organization uses OpenAthens, you can log in using your OpenAthens username and password. To check if your institution is supported, please see this list. Contact your library for more details.

Purchase access

You may purchase access to this article. This will require you to create an account if you don't already have one.
PreviousNext
Back to top
Download PDF
Citation Tools
De Novo Resistance to Arg10-Teixobactin Occurs Slowly and Is Costly
Daniel G. Lloyd, Benjamin J. Schofield, Matthew R. Goddard, Edward J. Taylor
Antimicrobial Agents and Chemotherapy Dec 2020, 65 (1) e01152-20; DOI: 10.1128/AAC.01152-20

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Print

Alerts
Sign In to Email Alerts with your Email Address
Email

Thank you for sharing this Antimicrobial Agents and Chemotherapy article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
De Novo Resistance to Arg10-Teixobactin Occurs Slowly and Is Costly
(Your Name) has forwarded a page to you from Antimicrobial Agents and Chemotherapy
(Your Name) thought you would be interested in this article in Antimicrobial Agents and Chemotherapy.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
De Novo Resistance to Arg10-Teixobactin Occurs Slowly and Is Costly
Daniel G. Lloyd, Benjamin J. Schofield, Matthew R. Goddard, Edward J. Taylor
Antimicrobial Agents and Chemotherapy Dec 2020, 65 (1) e01152-20; DOI: 10.1128/AAC.01152-20
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Top
  • Article
    • ABSTRACT
    • INTRODUCTION
    • RESULTS AND DISCUSSION
    • MATERIALS AND METHODS
    • ACKNOWLEDGMENTS
    • FOOTNOTES
    • REFERENCES
  • Figures & Data
  • Info & Metrics
  • PDF

KEYWORDS

antibiotic resistance
moenomycin
Staphylococcus aureus
MRSA
in vitro resistance
teixobactin
de novo resistance
experimental evolution

Related Articles

Cited By...

About

  • About AAC
  • Editor in Chief
  • Editorial Board
  • Policies
  • For Reviewers
  • For the Media
  • For Librarians
  • For Advertisers
  • Alerts
  • AAC Podcast
  • RSS
  • FAQ
  • Permissions
  • Journal Announcements

Authors

  • ASM Author Center
  • Submit a Manuscript
  • Article Types
  • Ethics
  • Contact Us

Follow #AACJournal

@ASMicrobiology

       

ASM Journals

ASM journals are the most prominent publications in the field, delivering up-to-date and authoritative coverage of both basic and clinical microbiology.

About ASM | Contact Us | Press Room

 

ASM is a member of

Scientific Society Publisher Alliance

 

American Society for Microbiology
1752 N St. NW
Washington, DC 20036
Phone: (202) 737-3600

Copyright © 2021 American Society for Microbiology | Privacy Policy | Website feedback

Print ISSN: 0066-4804; Online ISSN: 1098-6596