Skip to main content
  • ASM
    • Antimicrobial Agents and Chemotherapy
    • Applied and Environmental Microbiology
    • Clinical Microbiology Reviews
    • Clinical and Vaccine Immunology
    • EcoSal Plus
    • Eukaryotic Cell
    • Infection and Immunity
    • Journal of Bacteriology
    • Journal of Clinical Microbiology
    • Journal of Microbiology & Biology Education
    • Journal of Virology
    • mBio
    • Microbiology and Molecular Biology Reviews
    • Microbiology Resource Announcements
    • Microbiology Spectrum
    • Molecular and Cellular Biology
    • mSphere
    • mSystems
  • Log in
  • My alerts
  • My Cart

Main menu

  • Home
  • Articles
    • Current Issue
    • Accepted Manuscripts
    • COVID-19 Special Collection
    • Archive
    • Minireviews
  • For Authors
    • Submit a Manuscript
    • Scope
    • Editorial Policy
    • Submission, Review, & Publication Processes
    • Organization and Format
    • Errata, Author Corrections, Retractions
    • Illustrations and Tables
    • Nomenclature
    • Abbreviations and Conventions
    • Publication Fees
    • Ethics Resources and Policies
  • About the Journal
    • About AAC
    • Editor in Chief
    • Editorial Board
    • For Reviewers
    • For the Media
    • For Librarians
    • For Advertisers
    • Alerts
    • AAC Podcast
    • RSS
    • FAQ
  • Subscribe
    • Members
    • Institutions
  • ASM
    • Antimicrobial Agents and Chemotherapy
    • Applied and Environmental Microbiology
    • Clinical Microbiology Reviews
    • Clinical and Vaccine Immunology
    • EcoSal Plus
    • Eukaryotic Cell
    • Infection and Immunity
    • Journal of Bacteriology
    • Journal of Clinical Microbiology
    • Journal of Microbiology & Biology Education
    • Journal of Virology
    • mBio
    • Microbiology and Molecular Biology Reviews
    • Microbiology Resource Announcements
    • Microbiology Spectrum
    • Molecular and Cellular Biology
    • mSphere
    • mSystems

User menu

  • Log in
  • My alerts
  • My Cart

Search

  • Advanced search
Antimicrobial Agents and Chemotherapy
publisher-logosite-logo

Advanced Search

  • Home
  • Articles
    • Current Issue
    • Accepted Manuscripts
    • COVID-19 Special Collection
    • Archive
    • Minireviews
  • For Authors
    • Submit a Manuscript
    • Scope
    • Editorial Policy
    • Submission, Review, & Publication Processes
    • Organization and Format
    • Errata, Author Corrections, Retractions
    • Illustrations and Tables
    • Nomenclature
    • Abbreviations and Conventions
    • Publication Fees
    • Ethics Resources and Policies
  • About the Journal
    • About AAC
    • Editor in Chief
    • Editorial Board
    • For Reviewers
    • For the Media
    • For Librarians
    • For Advertisers
    • Alerts
    • AAC Podcast
    • RSS
    • FAQ
  • Subscribe
    • Members
    • Institutions
Letter to the Editor

Remdesivir for COVID-19: Why Not Dose Higher?

Victoria C. Yan, Florian L. Muller
Victoria C. Yan
aDepartment of Cancer Systems Imaging, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Victoria C. Yan
Florian L. Muller
aDepartment of Cancer Systems Imaging, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
DOI: 10.1128/AAC.02713-20
  • Article
  • Figures & Data
  • Info & Metrics
  • PDF
Loading

LETTER

A recent article by Xu et al. (1) examined the on- and off-target toxicity of remdesivir (RDV) and its parent nucleoside, GS-441524. Notably, primary human hepatocytes (PHHs) and HepG2 cells (liver cancer cell line) were exceptionally sensitive to RDV treatment. Still, the authors conclude, “In clinical settings of COVID-19 [coronavirus disease 2019] treatment in hospitalized patients, the risk associated with possible RDV-related liver enzyme elevations is substantially lower compared to its established benefits in hospitalized COVID-19 patients.” Whereas we commend the authors’ rigorous study, we deplore the omission of citations of key clinical studies demonstrating no clear benefit with RDV (2, 3). The clinical efficacy of RDV is contentious; major clinical trials conducted with RDV yield mixed results (Table 1). The claim of “established benefits in hospitalized COVID-19 patients” rests on favorable results of a single double-blind, randomized controlled trial (RCT) (4) and at the omission of unfavorable interim results from the WHO Solidarity trial (3) and a double-blinded RCT by Wang et al. (2). By undermining these trial results (5, 6), Gilead implicitly acknowledges that the clinical benefits of RDV are modest, requiring the most stringent trial design to extract a favorable, statistically significant result (4). Ironically, Gilead dismisses the interim results from Solidarity on the basis of potential heterogeneity in controls and its open-label nature (6) yet touts their self-sponsored, open-label trials (7, 8) lacking a control group (7). Beyond its questionable clinical efficacy, it is unclear whether the current RDV regimen effectively reduces viral loads in patients’ lungs (2, 9). Wang et al. (2) found no difference in viral reduction in the upper respiratory tracts of RDV-treated versus placebo groups. Given RDV’s limited clinical and antiviral efficacy, we ask, why not dose higher?

View this table:
  • View inline
  • View popup
  • Download powerpoint
TABLE 1

Clinical efficacy of RDV, by major clinical trial

In a phase 1 trial with RDV in healthy volunteers, graded transaminase elevations were observed in 25% of participants in the 7-day multiple-ascending-dose (MAD) cohort (150 mg daily, 1,050 mg cumulative dose) and in 75% of participants in the 14-day MAD cohort (150 mg daily, 2,100 mg cumulative dose) (10), which concurs with the unique sensitivity of PHHs to RDV in vitro (1, 11). Comparing the magnitude of hepatotoxicity in healthy participants ties transaminase elevations to total dose exposure (Table 2); hepatotoxicity was not observed in the 225-mg single-dose cohort (10). For reference, the recommended dosage (200-mg loading dose, 100-mg maintenance) results in total doses of 600 mg (5 days) and 1,100 mg (10 days), which fall below the threshold for hepatotoxicity (1,050 to 2,100 mg). If viral suppression is a Cmax (maximum concentration)-driven effect and the degree of hepatotoxicity relates to cumulative exposure, then it may be possible to compress the dosing schedule to enable higher dosing while maintaining the same cumulative dose. For instance, a 300-mg loading dose with 200-mg maintenance for 5 days yields a cumulative dose of 1,100 mg. Although we foresaw these shortcomings with RDV some time ago and have advocated for clinical investigation of GS-441524 in regard to safety (12–16), investigating dose modifications with RDV may benefit patients more readily (17), and we urge Gilead to do so.

View this table:
  • View inline
  • View popup
  • Download powerpoint
TABLE 2

Dose-dependent hepatotoxicity of RDV in healthy volunteers

ACKNOWLEDGMENT

We thank Steve Kirsch and the COVID-19 Early Treatment Fund (CETF) for financial support.

FOOTNOTES

    • Accepted manuscript posted online 8 February 2021.
  • Supplemental material is available online only.

  • For the author reply, see https://doi.org/10.1128/AAC.00085-21.

  • Copyright © 2021 American Society for Microbiology.

REFERENCES

  1. 1.↵
    1. Xu Y,
    2. Barauskas O,
    3. Kim C,
    4. Babusis D,
    5. Murakami E,
    6. Kornyeyev D,
    7. Lee G,
    8. Stepan G,
    9. Perron M,
    10. Bannister R,
    11. Schultz BE,
    12. Sakowicz R,
    13. Porter D,
    14. Cihlar T,
    15. Feng JY
    . 2020. Off-target in vitro profiling demonstrates that remdesivir is a highly selective antiviral agent. Antimicrob Agents Chemother 65:e02237-20. doi:10.1128/AAC.02237-20.
    OpenUrlAbstract/FREE Full Text
  2. 2.↵
    1. Wang Y,
    2. Zhang D,
    3. Du G,
    4. Du R,
    5. Zhao J,
    6. Jin Y,
    7. Fu S,
    8. Gao L,
    9. Cheng Z,
    10. Lu Q,
    11. Hu Y,
    12. Luo G,
    13. Wang K,
    14. Lu Y,
    15. Li H,
    16. Wang S,
    17. Ruan S,
    18. Yang C,
    19. Mei C,
    20. Wang Y,
    21. Ding D,
    22. Wu F,
    23. Tang X,
    24. Ye X,
    25. Ye Y,
    26. Liu B,
    27. Yang J,
    28. Yin W,
    29. Wang A,
    30. Fan G,
    31. Zhou F,
    32. Liu Z,
    33. Gu X,
    34. Xu J,
    35. Shang L,
    36. Zhang Y,
    37. Cao L,
    38. Guo T,
    39. Wan Y,
    40. Qin H,
    41. Jiang Y,
    42. Jaki T,
    43. Hayden FG,
    44. Horby PW,
    45. Cao B,
    46. Wang C
    . 2020. Remdesivir in adults with severe COVID-19: a randomised, double-blind, placebo-controlled, multicentre trial. Lancet 395:1569–1578. doi:10.1016/S0140-6736(20)31022-9.
    OpenUrlCrossRefPubMed
  3. 3.↵
    WHO Solidarity Trial Consortium, Pan H, Peto R, Henao-Restrepo AM, Preziosi MP, Sathiyamoorthy V, Abdool Karim Q, Alejandria MM, Hernández García C, Kieny MP, Malekzadeh R, Murthy S, Reddy KS, Roses Periago M, Abi Hanna P, Ader F, Al-Bader AM, Alhasawi A, Allum E, Alotaibi A, Alvarez-Moreno CA, Appadoo S, Asiri A, Aukrust P, Barratt-Due A, Bellani S, Branca M, Cappel-Porter HBC, Cerrato N, Chow TS, Como N, Eustace J, García PJ, Godbole S, Gotuzzo E, Griskevicius L, Hamra R, Hassan M, Hassany M, Hutton D, Irmansyah I, Jancoriene L, Kirwan J, Kumar S, Lennon P, Lopardo G, Lydon P, Magrini N, Maguire T, Manevska S, Manuel O, McGinty S, Medina MT, Mesa Rubio ML, Miranda-Montoya MC, Nel J, Nunes EP, Perola M, Portolés A, Rasmin MR, Raza A, Rees H, Reges PPS, Rogers CA, Salami K, Salvadori MI, Sinani N, Sterne JAC, Stevanovikj M, Tacconelli E, Tikkinen KAO, Trelle S, Zaid H, Røttingen JA, Swaminathan S. 2020. Repurposed antiviral drugs for Covid-19 — Interim WHO Solidarity trial results. N Engl J Med:NEJMoa2023184. doi:10.1056/NEJMoa2023184.
    OpenUrlCrossRefPubMed
  4. 4.↵
    1. Beigel JH,
    2. Tomashek KM,
    3. Dodd LE,
    4. Mehta AK,
    5. Zingman BS,
    6. Kalil AC,
    7. Hohmann E,
    8. Chu HY,
    9. Luetkemeyer A,
    10. Kline S,
    11. Lopez de Castilla D,
    12. Finberg RW,
    13. Dierberg K,
    14. Tapson V,
    15. Hsieh L,
    16. Patterson TF,
    17. Paredes R,
    18. Sweeney DA,
    19. Short WR,
    20. Touloumi G,
    21. Lye DC,
    22. Ohmagari N,
    23. Oh M,
    24. Ruiz-Palacios GM,
    25. Benfield T,
    26. Fätkenheuer G,
    27. Kortepeter MG,
    28. Atmar RL,
    29. Creech CB,
    30. Lundgren J,
    31. Babiker AG,
    32. Pett S,
    33. Neaton JD,
    34. Burgess TH,
    35. Bonnett T,
    36. Green M,
    37. Makowski M,
    38. Osinusi A,
    39. Nayak S,
    40. Lane HC
    . 2020. Remdesivir for the treatment of Covid-19—final report. N Engl J Med 383:1813–1826. doi:10.1056/NEJMoa2007764.
    OpenUrlCrossRefPubMed
  5. 5.↵
    1. Norrie JD
    . 2020. Remdesivir for COVID-19: challenges of underpowered studies. Lancet 395:1525–1527. doi:10.1016/S0140-6736(20)31023-0.
    OpenUrlCrossRefPubMed
  6. 6.↵
    Gilead Sciences. 2020. Gilead Sciences statement on the Solidarity trial. Gilead Sciences, Foster City, CA.
  7. 7.↵
    1. Goldman JD,
    2. Lye DCB,
    3. Hui DS,
    4. Marks KM,
    5. Bruno R,
    6. Montejano R,
    7. Spinner CD,
    8. Galli M,
    9. Ahn M-Y,
    10. Nahass RG,
    11. Chen Y-S,
    12. SenGupta D,
    13. Hyland RH,
    14. Osinusi AO,
    15. Cao H,
    16. Blair C,
    17. Wei X,
    18. Gaggar A,
    19. Brainard DM,
    20. Towner WJ,
    21. Muñoz J,
    22. Mullane KM,
    23. Marty FM,
    24. Tashima KT,
    25. Diaz G,
    26. Subramanian A, GS-US-540–5773 Investigators
    . 2020. Remdesivir for 5 or 10 days in patients with severe Covid-19. N Engl J Med 383:1827–1837. doi:10.1056/NEJMoa2015301.
    OpenUrlCrossRefPubMed
  8. 8.↵
    1. Spinner CD,
    2. Gottlieb RL,
    3. Criner GJ,
    4. Arribas López JR,
    5. Cattelan AM,
    6. Soriano Viladomiu A,
    7. Ogbuagu O,
    8. Malhotra P,
    9. Mullane KM,
    10. Castagna A,
    11. Chai LYA,
    12. Roestenberg M,
    13. Tsang OTY,
    14. Bernasconi E,
    15. Le Turnier P,
    16. Chang S-C,
    17. SenGupta D,
    18. Hyland RH,
    19. Osinusi AO,
    20. Cao H,
    21. Blair C,
    22. Wang H,
    23. Gaggar A,
    24. Brainard DM,
    25. McPhail MJ,
    26. Bhagani S,
    27. Ahn MY,
    28. Sanyal AJ,
    29. Huhn G,
    30. Marty FM, GS-US-540–5774 Investigators
    . 2020. Effect of remdesivir vs standard care on clinical status at 11 days in patients with moderate COVID-19. JAMA 324:1048–1057. doi:10.1001/jama.2020.16349.
    OpenUrlCrossRefPubMed
  9. 9.↵
    1. Parker M,
    2. Shepherd J,
    3. Alders N,
    4. Bamford A,
    5. Grandjean L
    . 2020. Remdesivir induced viral RNA and subgenomic RNA suppression, and evolution of viral variants in SARS-CoV-2 infected patients. medRxiv doi:10.1101/2020.11.18.20230599.
    OpenUrlCrossRef
  10. 10.↵
    1. Humeniuk R,
    2. Mathias A,
    3. Cao H,
    4. Osinusi A,
    5. Shen G,
    6. Chng E,
    7. Ling J,
    8. Vu A,
    9. German P
    . 2020. Safety, tolerability, and pharmacokinetics of remdesivir, an antiviral for treatment of COVID-19, in healthy subjects. Clin Transl Sci 13:896–906. doi:10.1111/cts.12840.
    OpenUrlCrossRef
  11. 11.↵
    1. Warren TK,
    2. Jordan R,
    3. Lo MK,
    4. Ray AS,
    5. Mackman RL,
    6. Soloveva V,
    7. Siegel D,
    8. Perron M,
    9. Bannister R,
    10. Hui HC,
    11. Larson N,
    12. Strickley R,
    13. Wells J,
    14. Stuthman KS,
    15. Van Tongeren SA,
    16. Garza NL,
    17. Donnelly G,
    18. Shurtleff AC,
    19. Retterer CJ,
    20. Gharaibeh D,
    21. Zamani R,
    22. Kenny T,
    23. Eaton BP,
    24. Grimes E,
    25. Welch LS,
    26. Gomba L,
    27. Wilhelmsen CL,
    28. Nichols DK,
    29. Nuss JE,
    30. Nagle ER,
    31. Kugelman JR,
    32. Palacios G,
    33. Doerffler E,
    34. Neville S,
    35. Carra E,
    36. Clarke MO,
    37. Zhang L,
    38. Lew W,
    39. Ross B,
    40. Wang Q,
    41. Chun K,
    42. Wolfe L,
    43. Babusis D,
    44. Park Y,
    45. Stray KM,
    46. Trancheva I,
    47. Feng JY,
    48. Barauskas O,
    49. Xu Y,
    50. Wong P,
    51. Braun MR,
    52. Flint M,
    53. McMullan LK,
    54. Chen SS,
    55. Fearns R,
    56. Swaminathan S,
    57. Mayers DL,
    58. Spiropoulou CF,
    59. Lee WA,
    60. Nichol ST,
    61. Cihlar T,
    62. Bavari S
    . 2016. Therapeutic efficacy of the small molecule GS-5734 against Ebola virus in rhesus monkeys. Nature 531:381–385. doi:10.1038/nature17180.
    OpenUrlCrossRefPubMed
  12. 12.↵
    1. Yan VC,
    2. Muller FL
    . 2020. Advantages of the parent nucleoside GS-441524 over remdesivir for Covid-19 treatment. ACS Med Chem Lett 11:1361–1366. doi:10.1021/acsmedchemlett.0c00316.
    OpenUrlCrossRefPubMed
  13. 13.↵
    1. Yan V,
    2. Muller F
    . 2020. Comprehensive summary supporting clinical investigation of GS-441524 for Covid-19 treatment. OSF Preprints. doi:10.31219/OSF.IO/MNHXU.
    OpenUrlCrossRef
  14. 14.↵
    1. Pedersen NC,
    2. Perron M,
    3. Bannasch M,
    4. Montgomery E,
    5. Murakami E,
    6. Liepnieks M,
    7. Liu H
    . 2019. Efficacy and safety of the nucleoside analog GS-441524 for treatment of cats with naturally occurring feline infectious peritoniti. J Feline Med Surg 21:271–281. doi:10.1177/1098612X19825701.
    OpenUrlCrossRef
  15. 15.↵
    1. Dickinson PJ,
    2. Bannasch M,
    3. Thomasy SM,
    4. Murthy VD,
    5. Vernau KM,
    6. Liepnieks M,
    7. Montgomery E,
    8. Knickelbein KE,
    9. Murphy B,
    10. Pedersen NC
    . 2020. Antiviral treatment using the adenosine nucleoside analogue GS-441524 in cats with clinically diagnosed neurological feline infectious peritonitis. J Vet Intern Med 34:1587–1593. doi:10.1111/jvim.15780.
    OpenUrlCrossRef
  16. 16.↵
    1. Li Y,
    2. Cao L,
    3. Li G,
    4. Cong F,
    5. Li Y,
    6. Sun J,
    7. Luo Y,
    8. Chen G,
    9. Li G,
    10. Wang P,
    11. Xing F,
    12. Ji Y,
    13. Zhao J,
    14. Zhang Y,
    15. Guo D,
    16. Zhang X
    . 2020. Remdesivir metabolite GS-441524 efficiently inhibits SARS-CoV-2 infection in mouse model. bioRxiv doi:10.1101/2020.10.26.353300.
    OpenUrlAbstract/FREE Full Text
  17. 17.↵
    Food and Drug Administration. 2020 VEKLURY (remdesivir).
PreviousNext
Back to top
Download PDF
Citation Tools
Remdesivir for COVID-19: Why Not Dose Higher?
Victoria C. Yan, Florian L. Muller
Antimicrobial Agents and Chemotherapy Mar 2021, 65 (4) e02713-20; DOI: 10.1128/AAC.02713-20

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Print

Alerts
Sign In to Email Alerts with your Email Address
Email

Thank you for sharing this Antimicrobial Agents and Chemotherapy article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Remdesivir for COVID-19: Why Not Dose Higher?
(Your Name) has forwarded a page to you from Antimicrobial Agents and Chemotherapy
(Your Name) thought you would be interested in this article in Antimicrobial Agents and Chemotherapy.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
Remdesivir for COVID-19: Why Not Dose Higher?
Victoria C. Yan, Florian L. Muller
Antimicrobial Agents and Chemotherapy Mar 2021, 65 (4) e02713-20; DOI: 10.1128/AAC.02713-20
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Top
  • Article
    • LETTER
    • ACKNOWLEDGMENT
    • FOOTNOTES
    • REFERENCES
  • Figures & Data
  • Info & Metrics
  • PDF

KEYWORDS

COVID-19
GS-441524
drug metabolism
prodrug
remdesivir

Related Articles

Cited By...

About

  • About AAC
  • Editor in Chief
  • Editorial Board
  • Policies
  • For Reviewers
  • For the Media
  • For Librarians
  • For Advertisers
  • Alerts
  • AAC Podcast
  • RSS
  • FAQ
  • Permissions
  • Journal Announcements

Authors

  • ASM Author Center
  • Submit a Manuscript
  • Article Types
  • Ethics
  • Contact Us

Follow #AACJournal

@ASMicrobiology

       

ASM Journals

ASM journals are the most prominent publications in the field, delivering up-to-date and authoritative coverage of both basic and clinical microbiology.

About ASM | Contact Us | Press Room

 

ASM is a member of

Scientific Society Publisher Alliance

 

American Society for Microbiology
1752 N St. NW
Washington, DC 20036
Phone: (202) 737-3600

Copyright © 2021 American Society for Microbiology | Privacy Policy | Website feedback

Print ISSN: 0066-4804; Online ISSN: 1098-6596