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RESISTANCE TO ANTISEPTIC AGENTS:
THE qac GENES

Resistance to antiseptics and disinfectants, notably to
quaternary ammonium compounds and other organic cat-
ions, has emerged on plasmids in Staphylococcus species.
Two different determinants have been described: qacA-qacB
and qacC-qacD (also called ebr and smr). The QacA and
QacB proteins are very similar (81); the QacC and QacD
(48), Ebr (87), and Smr (26) proteins are the same and are
much smaller and different from QacA-QacB. On the basis of
uptake studies with and without inhibitors, an active efflux
mechanism has been proposed for both types of resistance
determinants (26, 32, 95).
The qacA gene has been cloned and sequenced. The

protein, which has an estimated size of 55 kDa, shows
relatedness to other transport proteins, including Tet pro-
teins in gram-positive and gram-negative bacteria, the otrB
gene product in Streptomyces species, and the Mmr protein
involved in methylenomycin A resistance in Streptomyces
species (81). Also, like the actII-ORF2 gene product in
Streptomyces species (21), QacA has a regulatory protein
that is transcribed in the opposite direction. This regulatory
protein shows strong similarity to repressors of gram-nega-
tive Tet proteins (81).
Like Bmr, the QacA protein appears to transport more

than one class of substrate. Besides resistance to rhodamine
6G and quaternary ammonium compounds, the cloned gene
mediates resistance to ethidium bromide, acriflavine, pent-
amidine isothionate, crystal violet, and other compounds
(95). The qacClqacD (ebrlsmr) gene has also been sequenced
(26, 48, 87); it encodes a protein of about 12 kDa, which is
almost five times smaller than QacA, and is a member of a
newly described family of small integral membrane proteins
(26). It also provides resistance to a number of different
compounds, but it has a more limited substrate range than
that of QacA (49). The energy for this active efflux mecha-
nism for resistance is derived from PMF (49). This is the
smallest single protein (107 amino acids) so far identified
which appears to be responsible for an efflux mechanism.
An endogenous efflux system for ethidium bromide was

also found in E. coli (41). The gene has been cloned and
shown to confer resistance to other monovalent cations,
including proflavine and phosphonium (73). The gene prod-
uct has not been identified, but the efflux is linked to PMF
(56). Similar efflux systems have been described in Acineto-
bacter calcoaceticus and Arthrobacter globifonnis (57, 58).
This efflux system is presumably also the basis for acriflavine
resistance, which was initially ascribed to decreased binding
(40, 61).

EVOLUTIONARY RELATIONSHIPS AMONG
ANTIBACTERIAL EFFLUX PROTEINS

The amino acid similarities of a number of antibacterial
efflux proteins suggest that they could have evolved from an
ancestral domain (designated alpha, as defined in gram-
negative Tet proteins [85]). Following its duplication, a
number of proteins which can be placed into related groups
evolved (Fig. 2).
One group consists of the gram-negative Tet proteins (of

which classes A, B, and C have been fully sequenced) (43,
44), the B. subtilis multiresistance protein (Bmr) (65), and
the quinolone efflux protein (NorA) from S. aureus (105).
There is 24% overall identity between the gram-negative

Tet(B) protein and the NorA and Bmr proteins (which are
themselves 44% identical). This group of proteins is charac-
terized by putative 12 membrane-spanning segments with a
large central cytoplasmic loop between two domains with
equal sizes (designated ot and 1). The chloramphenicol
resistance protein (CmlA) has structural features that are
related to those of gram-negative proteins, but it also has
amino acid likeness to those of proteins from gram-positive
bacteria (3). The efflux of chloramphenicol has not been
demonstrated.
There are three examples in the second proposed group,

which is related to the first group because of similarities in
their N-terminal domains, in which QacA shows 19% amino
acid identity with Tet(K) and Tet(L) and 28% identity with
Mmr. Mmr is included, even though efflux as a mechanism
for methylenomycin A resistance has not been shown.
Similarities in the C-terminal halves of the three proteins are
not readily discernible, although similarities in size are.
Proteins in this family are about 50 kDa, with a hypothesized
topology of 14 membrane-spanning units. There is no obvi-
ous hydrophilic region separating the two halves, as is seen
in the first group of efflux proteins, but a two-domain
structure has been reported by genetic complementation
studies of Tet(K) (60). If this group of efflux proteins has
evolved from an original N-terminal domain with six mem-
brane-spanning units (e.g., the at domain), there was either
further evolution of a duplicated a domain or the addition of
a different polypeptide to the N-terminal domain.
The inner membrane proteins encoded by the otrB gene

and the actII-ORF2 gene in Streptomyces species have not
been included in the model. They have some distant similar-
ities to the gram-negative and gram-positive Tet proteins (21,
63, 81), but less so than Mmr does (with which they show
greater similarities). They may represent a separate evolu-
tionary path, although perhaps from an original ancestral a
domain, like the other two groups.

ATP-DEPENDENT EFFLUX SYSTEMS: MACROLIDE
AND HEAVY METAL RESISTANCE

Recent evidence demonstrates that a novel plasmid-medi-
ated resistance to 14- and 15-membered macrolide antibiot-
ics present in Staphylococcus epidermidis is mediated by
active efflux (25, 80). The specificity of this efflux system is
illustrated by its inability to transport the 16-membered
macrolides. Like other antibiotic efflux systems, the mech-
anism was initially considered to be one of decreased per-
meability (42). Later, two groups of investigators showed
that the decreased uptake needed energy (25, 80). Reversal
of efflux followed use of DNP or CCCP and arsenate (to
inhibit ATP synthesis) (25, 80). Cloning of the gene (80)
showed that the protein is a member of a family of transport
proteins with an ATP-binding motif which use ATP hydro-
lysis as a source of energy.
Heavy-metal ions are toxic to bacteria. A frequent mech-

anism for resistance is one of active efflux (92, 96). Some of
these export systems appear to efflux the inorganic ion in
conjunction with ATP hydrolysis. Representative of these
inorganic ion ATPases are the arsenate-arsenite-antimony
system in gram-negative and gram-positive bacteria (59, 76,
90, 91, 96) and the cadmium-zinc system in Staphylococcus
and Bacillus species (69, 96, 104).
The arsenic resistance determinant on plasmid R773 from

E. coli is a complex of three polypeptides, ArsA, ArsB, and
ArsC. The 63-kDa ArsA protein, the catalytic subunit of the
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complex (96), is an ATPase whose catalytic activity requires
the oxyanionic substrate arsenite or antimonite. The two
halves of the protein are similar, strongly suggesting a prior
gene duplication event. Each half contains a potential ATP-
binding site. ArsA is needed for resistance to all three toxic
agents and is loosely associated with the membrane via the
ArsB protein, an integral membrane protein. Thus, the ArsB
protein presumably acts as the anion channel as well as the
binding site for ArsA. The ArsC protein, in binding to the
ArsA-ArsB complex, extends the spectrum of the efflux
system to include arsenate.
Cadmium (and zinc) resistance on plasmids in Staphylo-

coccus species (98) is specified by two genes, cadA and cadC
(69, 104). Nucleotide sequence analysis revealed an ATP-
binding domain in the cadA gene product. This is a large
protein with a single ATP-binding region that is different
from the ATPase (ArsA) associated with arsenate resistance.
It bears significant similarity to all functional regions of other
members of the E1E2 class of cation transporting-type
ATPases, including the bacterial K+ permease and the
animal muscle Ca2+ efflux ATPase (69, 91). Everted mem-
brane vesicles prepared from cells of B. subtilis expressing
the cad genes have been shown to accumulate Cd with ATP
as the driving force. In sodium dodecyl sulfate-polyacryl-
amide gels of the vesicle protein, the CadA protein is easily
visible (97).

OTHER HEAVY-METAL EFFLUX SYSTEMS

Resistance to cobalt, zinc, and cadmium is specified by the
czc determinant on a plasmid in Alcaligenes eutrophus.
Biochemical studies demonstrate an inducible energy-depen-
dent efflux system inA. eutrophus (68). Nucleotide sequence
analysis reveals four membrane-associated polypeptides,
but it is not yet known how active efflux is effected (67).
However, none of the proteins shows a recognizable ATP-
binding domain. The transport function of individual pro-
teins has been examined in mutants, both in E. coli and inA.
eutrophus. species. The core translocation protein CzcA
appears to specify cobalt efflux by itself. When CzcB is
associated with CzcA, zinc is also extruded; the addition of
CzcC to CzcA adds cadmium efflux. Thus, like the arsenate-
arsenite-antimony resistance determinant, at least one of the
components of the Czc complex affects or enlarges the
substrate specificity. The function of CzcD may relate to
induction of the resistance system rather than the biochem-
ical mechanism (92).
Another efflux system, that for cobalt and nickel, has been

found on a different plasmid in the same A. eutrophus strain.
This cnr determinant has been cloned, but it has not yet been
sequenced. Inhibition studies showed that nickel resistance
is linked to active efflux (88, 89).
There are a number of other metal ion resistance determi-

nants, such as those for chromate (8, 66), copper (13), and
tellurium (99), for which reduced accumulation and other
data suggest an efflux mechanism. However, more detailed
studies are needed. For instance, the gene (chrA) associated
with reduced chromate uptake in P. aeruginosa and a similar
one for chromate and cobalt in A. eutrophus have been
cloned and sequenced (8, 66). These are related genes, and
they code for very hydrophobic, presumedly integral mem-
brane proteins. Their mechanisms of action (reduced uptake
or active efflux) have not yet been elucidated.

RESISTANCE LINKED TO ACTIVE EFFLUX IN
NONBACTERIAL SYSTEMS

Active efflux as a mechanism for drug resistance has broad
biologic relevance, having been also reported in fungi (18),
protozoan parasites (38, 51), and mammalian tumor cells
(17). For instance, in many multi-drug-resistant mammalian
tumor cells, reduced accumulation of anthracyclines, vinca
alkaloids, epipidophylotoxins, and other antitumor agents is
observed. Early studies showed that energy inhibitors in-
creased uptake to levels that approached those of the drug-
susceptible cells (16). Moreover, resistant cells showed a
faster, energy-dependent export of the anthracycline dauno-
rubicin (93). These findings suggested an active efflux mech-
anism for resistance. Characteristic of these high-level-
resistant cells was the new appearance or increase in a
170-kDa membrane glycoprotein, termed the P (for perme-
ability) glycoprotein (17). Studies have demonstrated that
transported substances could be photolabeled to the P-gly-
coprotein, adding further support for its role in efflux (86).
Once sequenced, the gene (mdr) for P-glycoprotein was
shown to contain two ATP-binding domains; other studies
showed that P-glycoprotein has ATPase activity (17). An
ATP-dependent transport of daunorubicin into everted bile
canalicular membrane vesicles has been documented (35).
These findings have provided strong evidence for an ATP-
generated efflux mechanism that is effected by P-glycopro-
tein. There is significant similarity between the ATP-binding
domains of this protein and those associated with several
bacterial efflux systems (91). The fact that other efflux
systems may exist in mammalian cells has been suggested by
recent studies of a variety of resistant cell lines that show
decreased accumulation but that do not overexpress P-gly-
coprotein (39, 50, 94). Therefore, as in bacteria, other
endogenous systems for resistance based on active efflux
may be present and active in resistant mammalian tumor
cells.

Chloroquine resistance in Plasmodium species is another
example of a nonbacterial efflux system that is presumed to
be involved in resistance. Resistance is reversed by vera-
pamil, which also reverses multidrug resistance in mamma-
lian cells (51). A gene related to mdr has been identified
(102), but the full genetic basis for chloroquine resistance is
not yet understood (22, 100).

CONCLUSIONS

An increasing number of energy-dependent efflux mecha-
nisms for resistance to widely different natural and synthetic
agents has been discovered in bacteria. In many instances,
decreased permeability was the initial explanation for resis-
tance. While the genes for many efflux systems can occur on
exogenously acquired genetic elements, there appear to be
other systems intrinsic to the organisms, with genes located
on the bacterial chromosome, as exemplified by those for
minocycline and fluoroquinolones in E. coli (9, 53). Drug
resistance in other organisms may also rely on endogenous
active efflux of the toxic substance, with efflux activity
perhaps enhanced by mutation.

In view of the experience with these acquired and intrinsic
efflux systems in bacteria, decreased permeability to a drug
should be regarded as a phenotype and not as a mechanism
of resistance until in-depth accumulation studies that look
for active efflux have been performed. This consideration
may lead investigators to new insights into cell physiology
and the discovery of new efflux proteins. Development of a
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means to circumvent or block specific efflux mechanisms
could lead to important ways to treat infectious disease
agents which have so far thwarted antibacterial agents.
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