Letters to the Editor

First Report of Extended-Spectrum-β-Lactamase-Producing Salmonella enterica Isolates in Ireland

Production of extended-spectrum-β-lactamases (ESBLs) is predominantly associated with the Enterobacteriaceae, particularly Escherichia coli and Klebsiella pneumoniae. ESBL production in Salmonella spp. was first identified in 1988 (11) and is increasing in prevalance worldwide (3, 18). A survey of ESBL prevalence in Enterobacteriaceae in Ireland was previously conducted, but this did not include Salmonella spp. (13). We have examined a large collection of human and animal isolates of salmonella for ESBL production.

Antimicrobial susceptibility data for 4,466 isolates received between January 2001 and April 2005 was reviewed for suspected ESBL production using Clinical Laboratory Standards Institute (CLSI) ESBL screen criteria (7). This represents the complete collection of isolates received from human and animal sources by the National Salmonella Reference Laboratory of Ireland during this time period. ESBL production was confirmed by the CLSI combination disk method using cepodoxime and cefpodoxime plus clavulanate and by the ESBL Etest method using cefazidime/cefazidime plus clavulanate, cefotaxime/cefotaxime plus clavulanate, and ceftazidime/ceftazidime plus clavulanate strips (AB Biodisk). Confirmed ESBL producers were screened for blaTEM and blaSHV by PCR using specific primers and protocols as reported previously (8). The blaCTX-M gene was detected by PCR using universal CTX-M primers (16). The gene was characterized by PCR and sequencing as previously described for group 1 and group 9 genes (3) and using primers CTX-M-group-2F (5'-ATGATGACTCAG AGCATTC) and CTX-M-group-2R (5'-TCAGAAACCGTGTTGTTAC) for group 2 genes (4) or primers CTX-M-group 8/25F (5' -ATGATGAGAAAAAG CTAAG) and CTX-M-group 8/25R (5'-TTAATAAC CCGTCGGTAC), designed from the nucleotide sequence alignment of blaCTX-M-8 (5), blaCTX-M-25 (15), and blaCTX-M-26 (6), for group 8 and group 25 genes.

Seven ESBL-producing isolates were detected (Table 1). Five were from humans, and four of these were associated with travel outside of Ireland. Six of the seven ESBL producers were coresistant to other classes of antimicrobial agents (Table 1). The Salmonella enterica serovar Worthington isolate was from a 6-month-old child of Indian origin. Previous reports of serovar Worthington infection are predominantly from India, and resistance to cefotaxime and ceftriaxone has been noted (10); however, this is the first confirmation of ESBL production in serovar Worthington. The S. enterica serovar Concord isolate was from a patient originally from Ethiopia. CTX-M production in serovar Concord has not previously been reported. CTX-M production in S. enterica serovar Typhimurium is well described (9).

The majority of enzymes reported in this serovar belong to CTX-M group 2; however, CTX-M-15 and CTX-M-3 (both CTX-M group 1) have also recently been reported (1, 14). Serovar Typhimurium 695/04 reported here represents the first description of blaCTX-M-14 in this serovar. Serovar Typhimurium 227/05 was associated with travel to Andorra. The isolate repeatedly was confirmed as ESBL positive, with a cefotaxime MIC of 4 µg/ml, falling to 0.094 µg/ml in the presence of clavulanic acid, and a cefepime MIC of 16 µg/ml, falling to 0.25 µg/ml with clavulanic acid, while the cefazidime MIC was 0.5 µg/ml. PCR assays for blaCTX-M, blaSHV, and blaTEM were consistently negative for this isolate, and DNA was shown to be amplifiable by the 16S/23S rRNA intergenic spacer region PCR (2) (Table 1). The most common cefotaximases encountered are the CTX-M family of β-lactamases, and several members of this group have been associated with high levels of resistance to cefepime (12, 19). Hyperproduction of SHV-5 has also been associated with elevated MICs for cefepime (17). High-level resistance to cefepime in previous studies was associated with high level resistance (>32 µg/ml) to cefotaxime, which was not observed in isolate number 227/05 (12, 17). This suggests that this isolate may harbor another type of ESBL, e.g., PER-1, PER-2, VEB-1, BEL-1, or GES-1.

<table>
<thead>
<tr>
<th>Isolate no.</th>
<th>Yr</th>
<th>Serotype</th>
<th>Source</th>
<th>Extended antibiotic</th>
<th>MICa (µg/ml)</th>
<th>PCR (TEM, SHV, CTX-M)</th>
<th>Sequence analysis</th>
<th>Foreign travel</th>
</tr>
</thead>
<tbody>
<tr>
<td>227</td>
<td>2005</td>
<td>Typhimurium</td>
<td>Human</td>
<td>ACSSuTmCpd</td>
<td>0.5 4 16</td>
<td>Negative</td>
<td>N/A</td>
<td>Andorra</td>
</tr>
<tr>
<td>142</td>
<td>2005</td>
<td>Concord</td>
<td>Human</td>
<td>ACSSuTmGm MnCxCtxCpd CtxCpd</td>
<td>>256 >32 >16</td>
<td>TEM and CTX-M</td>
<td>CTX-M-15 and TEM-1</td>
<td>Ethiopia</td>
</tr>
<tr>
<td>695</td>
<td>2004</td>
<td>Typhimurium</td>
<td>Human</td>
<td>ACSSuTmCpd</td>
<td>4 >32 >16</td>
<td>CTX-M positive</td>
<td>CTX-M</td>
<td>None</td>
</tr>
<tr>
<td>172</td>
<td>2003</td>
<td>Typhimurium</td>
<td>Human</td>
<td>ACSSuTmCpd</td>
<td>>256 >32 >16</td>
<td>CTX-M positive</td>
<td>CTX-M-14</td>
<td>Africa</td>
</tr>
<tr>
<td>174</td>
<td>2003</td>
<td>Unnamed (O4,12; H7)</td>
<td>Avian</td>
<td>ASuTmSpCzCtzx</td>
<td>>256 >32 4</td>
<td>TEM positive</td>
<td>TEM-52</td>
<td>NA</td>
</tr>
<tr>
<td>279</td>
<td>2002</td>
<td>Worthington</td>
<td>Human</td>
<td>ASuKGMspCz</td>
<td>>256 >32 1.5</td>
<td>TEM and SHV positive</td>
<td>SHV-12 and TEM-1</td>
<td>India</td>
</tr>
<tr>
<td>1016</td>
<td>2001</td>
<td>Java</td>
<td>Beef</td>
<td>ASTmNaSpCpd</td>
<td>4 6 2</td>
<td>TEM positive</td>
<td>TEM-20</td>
<td>NA</td>
</tr>
</tbody>
</table>

a A, ampicillin; C, chloramphenicol; S, streptomycin; Su, compound sulfonamides; T, tetracycline; Tm, trimethoprim; K, kanamycin; Gm, gentamicin; Mn, minocycline; Na, nalidixic acid; Sp, spectinomycin; Cz, cefazidime; Ctx, cefotaxime; Cpd, cefpodoxime.

b TZ, cefazidime; CT, cefotaxime; PM, cefpodoxime.

c The Principality of Andorra is located in southwestern Europe, bordered by France and Spain.

d NA, not applicable.
REFERENCES

Dearbhaile Morris*
Mary Whelan
Geraldine Corbett-Feeney
Martin Cormican
Department of Bacteriology
National University of Ireland
Galway, Ireland

Peter Hawkey
Xu Li
Division of Immunology and Infection
University of Birmingham
Birmingham B15 2TT, United Kingdom

Geraldine Doran
National Salmonella Reference Laboratory of Ireland
University College Hospital
Galway, Ireland

*Phone: 35391544652
Fax: 35391495154
E-mail: dearbhaile.morris@nuigalway.ie