










FIG. 3. Negative-ion MALDI-TOF mass spectra of lipid A isolated from colistin-resistant and -susceptible A. baumannii isolates. (A) Ab15/133
and Ab15/132; (B) ABRIM ColS and ABRIM ColR; (C) ATCC 19606 ColS and ATCC 19606 ColR; (D) ATCC 19606 ColS �pmrB and ATCC
19606 ColR �pmrB.
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DISCUSSION

Colistin and tigecycline are often the only treatment options
for multiresistant A. baumannii infections, but resistance to
both agents has recently been described, with colistin resis-
tance scattered worldwide. A. baumannii Ab208628, used here
(Table 1), was resistant to all antibiotics tested and was asso-
ciated with a nosocomial outbreak (47). We sought to define
the mechanism(s) of colistin resistance in this species. Our data
show that at least one mutation in PmrB and pmrAB upregu-
lation seems necessary to confer this resistance.

Several mutations were found in PmrB, located at widely
scattered sites. Ala227Val lies adjacent to the conserved histi-
dine at the site of phosphorylation (His228), and Pro233Ser
lies at an essential position for dimer formation (43). Both of
these were found previously in colistin-resistant clinical strains
or laboratory mutants (2), and the positions seem critical for
the phosphatase activity. Mutations Asn353Tyr, Phe387Tyr,
and Ser403Phe lie inside the ATP binding site and may have an
effect on the phosphorylation of His228 of PmrB and thereby
the phosphorylation levels of Asp52 of PmrA, the response
regulator, which is the final acceptor of the phosphate group,
affecting the expression levels of target genes, such as pmrC
(45). The other mutations found in the nonconserved N-ter-
minal domains of PmrB (Table 1) may be responsible for
regulating the activity of the C-terminal kinase-phosphatase
conserved domain, typical of the two-component regulatory
systems (6, 33). Single substitutions in pmrB of P. aeruginosa at
positions 243, 248, and 292, affect the function of PmrB,
possibly by increasing phosphatase activity, thereby activat-
ing the PmrA regulon and increasing the resistance to colis-
tin by LPS modifications (1, 11). Similar effects in A. bau-
mannii may apply.

We observed increased expression of pmrA and pmrB in all
the colistin-resistant clinical isolates and laboratory mutants.
Adams et al. also reported increased pmrA expression in lab-
oratory-selected colistin-resistant mutants of A. baumannii (2).
The pmrA and pmrB genes seem to interact as an operon, as
they showed similar expression levels in the colistin-susceptible
strains, whereas inactivation of pmrB led to clear downregula-
tion of pmrC, also highlighting the interaction between these

components and the possible implication of pmrB in colistin
resistance.

Negative-ion MALDI-TOF mass spectra revealed the pres-
ence of phosphoethanolamine (m/z 2,034) in lipid A isolated
from the three colistin-resistant strains examined, a change
previously associated with resistance to polymyxins in Salmo-
nella (13). This phosphoethanolamine was lost when pmrB was
inactivated in a colistin-resistant strain, confirming its role.
Analysis also revealed the absence of hexa- and penta-acylated
lipid A species in colistin-resistant strains. This is in good
agreement with the idea that increased lipid A acylation (in the
dominant hepta-acylated material) is associated with antimi-
crobial peptide resistance (11). An interesting finding is the
relative increase in the levels of the tetra-acylated lipid A
species (m/z 1,404) in colistin-resistant clinical isolates (Fig. 3A
and B). This type of lipid A is associated with the lowest level
of activation of the human immune system (37), leading to
the tantalizing hypothesis that colistin-resistant Acinetobacter
strains may lead to less of an inflammatory response than a
colistin-susceptible one. Studies are ongoing to test this spec-
ulation.

Low-Mg2� conditions in Pseudomonas aeruginosa can regu-
late the resistance to colistin in response to environmental
conditions (29). In this study, reverse transcriptase (RT)-PCR
showed a slight increase of expression in pmrC, and MALDI-
TOF mass spectra revealed lipid A modification; thus, in a
similar way, the development of a moderate level of colistin
resistance in A. baumannii seems to be induced by the envi-
ronmental conditions.

Our results indicate a different mechanism of colistin resis-
tance in A. baumannii from that described by Moffatt et al.
(30), who noted the total loss of LPS production via inactiva-
tion of the biosynthesis pathway genes lpxA, lpxC, and lpxD.
Differences in selection methods may explain the development
of different mechanisms: our mutants were selected in LB
broth supplemented with stepwise increased colistin concen-
trations from 1 to 8 mg/liter, whereas Moffat et al. selected
with colistin at a fixed concentration of 10 �g/ml in agar. These
LPS-negative mutants became susceptible to cefepime, teicopla-
nin, and azithromycin, apparently reflecting defects to mem-

FIG. 4. Proposed structures of the main molecular lipid A species.
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brane integrity. No such traits in the present isolates and mu-
tants were seen, which retained LPS.

In summary, we report the analysis of pmrCAB in a diverse
collection of clinical isolates and laboratory mutants of A. bau-
mannii and its relationship with colistin resistance. We also
analyzed the composition of lipid A from resistant and suscep-
tible isolates. Our data suggest that resistance to colistin in A.
baumannii requires at least two distinct genetic events, as fol-
lows: (i) at least one amino acid change in PmrB, although
these changes were diverse and not localized to a specific
domain, and (ii) upregulated expression of pmrA and pmrB.
The precise genetic events that cause pmrAB upregulation
remain to be defined. These genetic changes lead, in turn, to
the addition of phosphoethanolamine to hepta-acylated lipid
A, leading to the LPS modifications that directly confer the
colistin resistance.
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