














Sertraline Is Effective against Cryptococcus

FIG 3 Antagonistic effects between sertraline and fluconazole among Candida strains. Six Candida strains, C. albicans SC5314, C. glabrata PAT2ISO3, C. krusei
DUMCI32.91, C. parapsilosis MMRL1594, C. tropicalis MMRL2017, and C. lusitaniae 2-367, were incubated in RPMI media with the indicated drug treatment.
Gradients in columns represent sertraline (shown in micrograms per milliliter); gradients in rows represent fluconazole (shown in micrograms per milliliter).
The scale of the fluconazole concentrations was determined based on a previous study (40). Growth was measured by absorbance at 600 nm after 24 h of
incubation. Green indicates fungal growth, and black indicates the lack of fungal growth.

screening and two rounds of additional screening to confirm the
selected phenotype, 88 resistant and 36 sensitive strains were iden-
tified (see Table S2 in the supplemental material). Gene ontology
analyses indicated that these genes are enriched for those with
roles in intracellular vesicle transport and membrane organization
(Fig. 4), which is consistent with the findings of two recent studies
of the effects of sertraline on yeast (27, 30).

Interestingly, genes related to protein synthesis are highly en-
riched in the resistant group; the most sensitive mutant selected
from our screen was strain Atif3, in which an important transla-
tion initiation factor Tif3 was disrupted. Since previous studies in
mammalian cells have indicated that sertraline inhibits translation
initiation (15), these data indicated that it was possible that ser-
traline also disrupts translation in fungi.

Sertraline inhibits translation in a Cryptococcusell-free sys-
tem. To determine the effect of sertraline on translation in Cryp-
tococcus, we performed in vitro translation assays. In these assays,
the luciferase mRNA was used as the template and the translation
machinery was provided by the cell extract obtained from C. neo-
formans strain H99. As expected, translation in these Cryptococcus
cell extracts was synergistically dependent on the mRNA 5 termi-
nal cap and 3’ terminal poly(A) tail, as with Saccharomyces cell
extract (Fig. 5A) and Neurospora crassa cell extract (33, 36). This
result verified that the Cryptococcus in vitro translation system
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faithfully recapitulated the dependence of cap and poly(A) for
translation.

The effects of sertraline on translation of cap and poly(A) lu-
ciferase mRNA were assessed by measurement of both (i) the en-
zymatic activity of the luciferase produced by the in vitro transla-
tion and (ii) the level of [*>S] methionine incorporation into the
luciferase polypeptide produced. We found that sertraline inhib-
ited the translation efficiency in a dose-dependent manner using
both detection methods (Fig. 5B and C). Luciferase enzyme activ-
ity dropped 50% compared to the control when the concentration
of sertraline was increased to 0.1 mM (30.6 pg/ml). No enzyme
activity above the background was detected in the presence of
sertraline at 0.4 mM (122.4 pg/ml). The decrease in luciferase
enzyme activity in the presence of sertraline was not due to direct
interference of sertraline with the enzymatic activity of the synthe-
sized luciferase, since, based on this measurement, addition of
sertraline into the cell extract after translation was completed did
not alter enzyme activity (Fig. 5B). The [**S] methionine incorpo-
ration assay showed that sertraline affected the yield of luciferase
polypeptide synthesized in this cell extract (Fig. 5C). Protein syn-
thesis was also affected by sertraline in fungal extracts derived
from the yeast S. cerevisiae and the filamentous fungus N. crassa,
although higher concentrations of sertraline were required to
achieve a similar level of inhibition (see Fig. S3 in the supplemen-
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FIG 4 Gene ontology analysis of the S. cerevisiae genes involved in sertraline tolerance or susceptibility. Gene ontology (GO) terms for annotated S. cerevisiae
genes involved in sertraline resistance (A) or susceptibility (B) were extracted from the GO database and sorted into the immediate subcategories for molecular
functions and biological processes. See Table S2 in the supplemental material for the detailed gene list.
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FIG 5 Sertraline inhibits translation in a Cryptococcus cell-free system. The cell-free translation system was prepared as described in Materials and Methods. (A)
The translation of luciferase in both Cryptococcus and Saccharomyces cell extracts is dependent on the mRNA 5’ terminal cap, designated C, and on the 3’ terminal
poly(A) tail, designated A. The cap and poly(A) synergistically stimulate RNA translation in both cell-free systems. (B and C) Water, the solvent DMSO, or
sertraline in stock solution was added into reaction mixtures to reach the indicated concentrations. Luciferase protein synthesis by the cell-free translation system
was measured based on the relative light units arising from the enzymatic activity of luciferase (B) or the level of [**S]methionine incorporated into the
synthesized luciferase polypeptide (C). Both measurements showed that sertraline inhibited translation in a dose-dependent manner.

tal material). In contrast, fluconazole, which is known to target the
enzyme Ergll in the ergosterol biosynthetic pathway, did not
show any inhibitory effect on protein synthesis in a similar con-
centration range in such assays (see Fig. S4 in the supplemental
material). These data obtained in cell-free translation systems us-
ing fungal extracts show that sertraline interferes with fungal pro-
tein synthesis.

DISCUSSION

Sertraline offers a promising option for the treatment of cryp-
tococcosis, especially cryptococcal meningitis. Here we provide
evidence for the potent anticryptococcal activity of the antidepres-
sant sertraline both in vitro and in vivo. Given the difficulties in
developing antifungal drugs de novo, recent studies have explored
existing clinical compounds for potential use as antifungals (39).
Existing pharmaceutical and safety information concerning the
use of these drugs in animals or in humans could greatly accelerate
the investigation into their clinical use as antifungals. Consistent
with the safety profile of sertraline for long-term use in patients,
we did not observe any severe side effects due to sertraline admin-
istration during the treatment process in the animal studies pre-
sented here. Previous studies also showed the safety of sertraline
administration in mice with a similar daily dose but for a much
longer period of time (25).

The discovery that sertraline has anticryptococcal activity of-
fers the potential for an additional choice for treating cryptococ-
cosis. Our tests of 24 diverse Cryptococcus strains indicate a uni-
formly high sensitivity of this fungus to sertraline relative to other
fungal species tested. Compared to fluconazole, sertraline showed
a much narrower range of inhibitory concentrations against these
diverse Cryptococcus isolates (Table 1), suggesting a lower proba-
bility of naturally occurring resistance to sertraline in existing
Cryptococcus populations. The fungicidal nature of sertraline and
its synergy with fluconazole against Cryptococcus, as previously
observed in vitro (21) and in vivo in an insect model (30) and in
this study shown in a mammalian model, could potentially
shorten the duration of anticryptococcal therapy and reduce the
risk of emerging drug resistance. During latent infection or during
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fluconazole treatment, Cryptococcus cells are likely dormant or
grow slowly. Given that even dormant cells need transcription and
translation (22), and that sertraline is capable of killing fungal cells
under quiescent conditions, it is reasonable to speculate that ser-
traline might be useful to clear latent cryptococcal infections or to
kill residual fungal cells unharmed by the fluconazole treatment.
This could be tested by further investigation.

It is worth mentioning that we did not observe any differences
in survival in any of the treatment groups (including the flucona-
zole-treated groups). This is most likely due to the rapid disease
progression in this model. The A/J mouse used in this study is very
susceptible to Cryptococcus infections, and H99 is one of the most
virulent clinical isolates of Cryptococcus (38). We tried different
inocula of the fungal cells (1 X 10°, 1 X 10% and 1 X 10° cells/
mouse) in this intravenous infection model and found that a 10-
fold decrease in the inoculum prolonged survival for an additional
1 to 2 days and that infected mice all succumbed to the diseases
within 8 days. We speculate that better protection against crypto-
coccosis by sertraline or the drug combination might be observed
in other animal models or in humans, or if cryptococcosis is
caused by less virulent strains. Optimization of drug doses, the
route and frequency of drug administration, and the duration of
treatment warrants further investigation in order to assess the
treatment outcomes.

One of the most valuable aspects of sertraline as a potential
anticryptococcal drug is its superior ability to accumulate in the
CNS relative to other antifungals. This is particularly critical in the
treatment of cryptococcosis, given that Cryptococcus preferentially
proliferates in the brain. Consistent with our expectations, the in
vivo study presented here supports the hypothesis of the ability of
sertraline, either alone or in combination with fluconazole, to
reduce brain fungal burden.

Although sertraline demonstrates efficacy against cryptococ-
cosis comparable to that of fluconazole based on the data pre-
sented here, the potential application of this drug to treat mycoses
caused by fungal pathogens such as Candida or Aspergillus re-
quires further investigation. The commonly observed antagonis-
tic interaction between sertraline and fluconazole against Candida
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and Aspergillus strains is particularly concerning (this study and
reference 7). It is possible that specific chemical modification of
sertraline could increase its efficacy against these other fungi and
abolish its antagonistic interaction with fluconazole. Such modi-
fications would increase its value in the battle against systemic
mycoses.

The antifungal mechanisms of sertraline. Sertraline displays
extremely broad antiproliferation activity against evolutionarily
diverse organisms (10, 12-15, 19, 20, 23). Recent studies indicate
the influence of sertraline on membrane stability or vesicle trans-
port in fungi (27, 30). The results of our S. cerevisiae mutant
screens are consistent with these discoveries. Our mutant screens
and the in vitro translation assays also indicated protein synthesis
as another process interfered with by sertraline. Our finding re-
garding the inhibitory effect of sertraline on translation is consis-
tent with a recent study on translation in tumor cells (15), even
though the implicated mammalian factors in the mTOR pathway
identified in that study, such as PDCD4 or REDD1, do not have
obvious homologs in fungi. Inhibition of translation could possi-
bly cause changes in other processes, as molecules involved in
protein trafficking and membrane proteins were also significantly
enriched in our screen (Fig. 4; see also Table S2 in the supplemen-
tal material). Sertraline’s impact on translation might more
acutely affect protein synthesis from specific transcripts in Cryp-
tococcus important for growth such that it does not need to com-
pletely inhibit protein synthesis for its strong anticryptococcal ac-
tivity. Thus, while sertraline inhibits mammalian protein
synthesis, it may be that qualitative, not quantitative, differences
in sertraline’s effects on fungal protein synthesis are crucial for
sertraline’s antiproliferation activity.

The possibility of emergence of fungal resistance to sertraline
seems low based on the following observations. First, we noted
during our genetic screen that S. cerevisiae gene deletion mutants
selected for sertraline resistance showed an increase in MIC of
only up to 50% compared to the wild type. Second, our repeated
attempts to perform UV mutagenesis with S. cerevisiae and C.
neoformans failed to yield any resistant strains with sertraline
MICs greater than 14 wg/ml. Third, all natural Cryptococcus
strains tested showed uniformly high sensitivity to sertraline. Such
observations are drastically different from what is known for azole
drugs, as a more than 10- to 100-fold difference in fluconazole
susceptibilities can be easily observed in both clinical and labora-
tory settings. This feature, although making it rather challenging
to pinpoint the underlying fungicidal mechanisms of sertraline,
could be advantageous for its clinical application, as the possibility
of encountering sertraline-resistant Cryptococcus isolates and the
risk of developing fungal resistance during therapy would be low.
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