








strains displayed a growth defect compared to the wild-type strain
(Table 1), showing that the differences in MIC were specifically
due to loss of resistance determinants and not to altered growth
kinetics. Complementation of the EF2050-2049 deletion mutant
by supplying the transporter operon in trans (strain DLEf16) re-
stored bacitracin resistance (Table 1). The higher MIC compared
to the wild-type strain is most likely due to the increase in copy
number by the plasmid-based complementation strategy and sup-
ports the role of EF2050-2049 in bacitracin resistance of E. faecalis.

Transporters and TCS form a regulatory network. BceAB-
type transporters are often required for their own regulation by
acting as the actual sensors of antimicrobial peptides that some-
how communicate with the TCS to trigger activation of the signal-
ing cascade (11, 17). In such cases, expression of the transporter
operon is abolished in strains carrying transporter deletions (11,
12, 32). In some bacteria, exemplified by Staphylococcus aureus,
two separate transporters exist, where one acts as the sensor, while
the second is responsible for resistance (17, 32). We therefore
wanted to investigate the role of the two enterococcal transporters
in regulation of their own promoters. Additionally, the TCS
EF0926-0927 had so far only been implicated in regulation of the
transporters based on sequence predictions, which had to be val-
idated experimentally.

Deletion of the sensor kinase EF0927 drastically reduced the
expression levels of PEF2050-lacZ to less than 20% of wild-type
activities (Fig. 2B, left). Interestingly, a significant induction by
bacitracin could still be observed, which was again likely due to the
presence of the response regulator as described below. Expression
of PEF2752-lacZ was also reduced by deletion of the sensor kinase,
but due to the overall low activities of this reporter, the differences
were less pronounced. Nevertheless, the significant induction by
bacitracin observed in the wild type was lost in the EF0927 dele-
tion strain (Fig. 2B, right). These data show that the TCS EF0926-
0927 indeed acts as the regulator for both transporter operons.

Deletion of the transporter EF2050-2049 had no effect on ex-
pression of either transporter (Fig. 2B), indicating that this trans-
porter’s role was restricted to mediating resistance. In contrast,
deletion of EF2752-2751 severely reduced the activities of both
lacZ fusions, and bacitracin-dependent induction was lost (Fig.
2B). Thus, the second transporter represents the antibiotic sensor
of the resistance network.

In B. subtilis, expression of BceRS, the TCS regulating bceAB
expression, is not induced by bacitracin (33). However, the ho-
mologous system BraRS from S. aureus (referred to as NsaRS in
reference 34) was shown to be upregulated in response to nisin,

one of its substrate peptides (34). To test if EF0926-0927 was in-
ducible by bacitracin, we constructed a transcriptional fusion of
the promoter PEF0926 to lacZ and introduced it into E. faecalis
JH2-2 and derived deletion strains. Exposure of exponentially
growing cells to bacitracin resulted in a strong upregulation of
promoter activities from 1 to 16 MU (Fig. 3). Interestingly, dele-
tion of neither the TCS nor the two transporters affected promoter
activities or bacitracin-dependent induction (Fig. 3), showing that
regulation of the TCS is mediated by an as-yet-unidentified addi-
tional regulator and not due to autoregulation. Importantly, this
regulation by a factor external to the resistance network may offer
an explanation for the mild phenotypes of the EF0927 deletion
strain compared to the transporter mutants: in the 	EF0927 back-
ground, expression of the response regulator gene EF0926 is still
upregulated in the presence of bacitracin. Because in the absence
of their cognate sensor kinase many response regulators can be
efficiently phosphorylated and thus activated by small-molecule
phospho-donors such as acetyl-phosphate (35, 36), this increased
production of EF0926 may indirectly lead to an induction of its
target promoters by bacitracin.

EF2050-2049 can mediate bacitracin resistance in B. subtilis.
Because of the mild effects of the gene deletions generated in E.
faecalis, we next attempted to transfer parts of the identified resis-
tance network to B. subtilis to confirm the individual roles of the
components in bacitracin resistance. As a chassis, we employed a
strain of B. subtilis W168 carrying unmarked deletions of all three
endogenous Bce-like modules (bceRS-bceAB, psdRS-psdAB, and
yxdJK-yxdLM-yxeA). This strain, TMB1518, has been developed
and validated as an appropriate platform to investigate resistance
mechanisms against inhibitors of cell wall synthesis and the asso-
ciated regulatory pathways from E. faecalis in a genetically highly
accessible set-up (a detailed description will be published else-
where). Expression of the EF2050-2049 operon under the control
of a xylose-inducible promoter increased the MIC for bacitracin

FIG 3 Induction of the two-component system operon by bacitracin. The
promoter region of the two-component system operon EF0926-0927 was
fused to lacZ and introduced into wild-type E. faecalis JH2-2 (WT) and mutant
backgrounds. The resulting strains were assayed for �-galactosidase activity,
expressed in Miller units (MU), after 1 h exposure of exponentially growing
cultures to 0 �g ml�1 (white bars) or 4 �g ml�1 (gray bars) bacitracin. The
genes deleted in each strain are indicated by locus tags below the bars. Results
are means plus standard deviations for three biological replicates. The signifi-
cance of induction and strain differences was calculated across the entire data
set by two-way analysis of variance (ANOVA). Significant effects of bacitracin
compared to uninduced cells are indicated by three asterisks (P � 0.001); the
different mutant backgrounds caused significant differences between strains
(P � 0.018; not depicted in the graph).

TABLE 1 Bacitracin sensitivity of E. faecalis strains

Strain or genotype

MIC (�g ml�1)
Growth rate
(h�1)bBroth dilutiona Etest

JH2-2 32 32 1.06 
 0.067
	EF0927 16–32 24 1.2 
 0.377
	EF2050-2049 8–16 8 1.11 
 0.135
	EF2752-2751 16 16 1.14 
 0.146
	EF2050-2049 	EF2752-2751 8 8 1.08 
 0.033
DLEf16 64 64 ND
a Results are from three independent broth dilution experiments; where a range of
concentrations is given, results varied between replicates.
b Results are means 
 standard errors from three to six independent experiments. ND,
not determined.
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of TMB1518 from 2 �g ml�1 to 4 to 8 �g ml�1 (from 1 to 1.5 �g
ml�1 to 3 �g ml�1 when determined by Etest assays), while ex-
pression of EF2752-2751 was unable to confer any resistance. As
observed before for E. faecalis, the differences in MIC were again
small. We therefore chose a different approach, assaying for
growth inhibition of exponentially growing cultures that were
challenged with increasing antibiotic concentrations, which can
provide a more sensitive assay for cell wall-active antibiotics. B.
subtilis strain TMB1518 as well as its derivative carrying the
EF2752-2751 expression construct were unaffected by 2 �g ml�1

bacitracin, while 4 �g ml�1 or 8 �g ml�1 increasingly inhibited
growth (Fig. 4A and C). In contrast, the strain harboring the ex-
pression construct for EF2050-2049 was not affected by concen-
trations up to 4 �g ml�1 and showed only slight growth inhibition
at 8 �g ml�1 (Fig. 4B). Exposure to 16 �g ml�1 caused cell lysis in
all strains tested (Fig. 4). These data confirm that EF2050-2049 is
indeed directly capable of mediating bacitracin resistance, not
only in E. faecalis but also in the heterologous host B. subtilis.
EF2752-2751, on the other hand, is not directly responsible for
bacitracin resistance.

EF2752-2751 and the TCS are sufficient for promoter induc-
tion in B. subtilis. Following the successful transfer of bacitracin
resistance to B. subtilis, we next wanted to test if the regulatory
pathway could also be reconstituted in the heterologous host. To
this end, both target promoters, PEF2050 and PEF2752, were fused to
the bacterial luciferase operon luxABCDE as a reporter (22) and
introduced into TMB1518. Both constructs resulted in basal lucif-
erase activities that were not affected by addition of bacitracin
(Fig. 5, leftmost panels). Thus, no endogenous B. subtilis system
was able to induce either of the promoters. Next, the TCS operon
EF0926-0927 was introduced into the reporter strains, controlled
by the promoter of the homologous bceRS operon of B. subtilis to
ensure appropriate expression levels. The presence of the TCS
alone did not alter the activities of the transporter promoters, and
bacitracin-dependent induction was still not observed (Fig. 5, left
center panels), confirming that the TCS alone is unable to respond
to the peptide, as has been shown for other BceRS-like systems
(11, 12, 32). Additional introduction of the expression construct
for EF2050-2049 also did not change the promoter activities (Fig.
5, right center panels), showing that the encoded transporter has
no sensory function. In contrast, simultaneous presence of the
TCS and the transporter EF2752-2751 increased the basal activi-

ties of the PEF2050-lux reporter, and addition of bacitracin resulted
in a further 2-fold induction (Fig. 5, top rightmost panel). Expres-
sion of PEF2752-lux was not altered in the same genetic background
(Fig. 5, bottom rightmost panel), consistent with the minor in-
duction observed for this promoter in E. faecalis. These results
clearly show that together, the transporter EF2752-2751 and the
TCS EF0926-0927 constitute the sensory and regulatory compo-
nent of the resistance network and that the second transporter
operon, EF2050-2049, is their main target.

DISCUSSION

Our proteomic analysis of bacitracin-exposed E. faecalis showed
that the bacterium responds to the antibiotic with a specific reac-
tion to the bacitracin-induced cell wall damage, as well as with a
more general response to stress or growth inhibition. Overall, our
data are largely consistent with the findings of a recent transcrip-
tome analysis of E. faecalis treated with different inhibitors of cell
wall synthesis, including bacitracin and vancomycin (8). A de-
tailed comparison of our study and the previous one is presented
in the supplemental text. Together, these two data sets provide a
useful overview of the response of E. faecalis to inhibitors of cell
wall synthesis such as bacitracin.

Among the differentially expressed genes identified from both
studies was a putative ABC transporter, EF2050-2049, which is a
homologue of the bacitracin resistance transporter BceAB of B.
subtilis (11, 33). A second such transporter, EF2752-2751, had been
previously identified in E. faecalis by a comparative genomics anal-
ysis of BceAB-type transporters in Firmicutes bacteria (16). While
this second transporter was not found in our proteomic analysis,
its ATP-binding cassette domain-encoding gene, EF2752, was
slightly induced by bacitracin during the transcriptome study (8).
Additionally, we could identify a TCS of E. faecalis with similarity
to BceRS of B. subtilis, which regulates expression of BceAB (33).
Again, the encoding genes EF0926-0927 had been reported as bac-
itracin inducible and were also found to be induced by the cell
wall-active antibiotics cephalothin and vancomycin (8). Our sub-
sequent characterization of these three gene loci in E. faecalis as
well as heterologously in B. subtilis showed that they act together
and form a resistance network against bacitracin. A schematic of
the derived model is shown in Fig. 6.

The primary sensor of the network is the transporter EF2752-
2751, which communicates the presence of bacitracin to the sen-

FIG 4 Transfer of bacitracin resistance to B. subtilis. Strain TMB1518 (A) and derived strains carrying expression constructs of the transporter operon
EF2050-2049 (B) or EF2752-2751 (C) were grown to exponential phase and challenged with bacitracin, and growth was monitored as optical density (OD600).
The time point of bacitracin addition is indicated by the arrow; concentrations are given in panel A. Representative results of two or three independent
experiments are shown. Experiments were carried out in a 100-�l culture volume in 96-well plates; thus, OD values cannot be directly compared to measurements
made in cuvettes with a 1-cm light path length.
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sor kinase EF0927. Activation of the sensor kinase and phospho-
transfer to the response regulator EF0926 then leads to activation
of the main target promoter, PEF2050, and increased production of
the transporter EF2050-2049. This transporter then removes the
bacitracin from its site of action, thus ensuring resistance. Simul-
taneously, expression of the sensory transporter is slightly induced
by the TCS, while expression of the TCS operon is induced by an
as-yet-unidentified regulator that is not directly part of the resis-
tance network. Upregulation of a BceRS-like TCS has so far been
reported only for the BraRS (� NsaRS) system of S. aureus (34)
and may lead to an increased sensitivity or stronger induction of
the resistance transporter. Future studies will be directed at iden-
tification of the regulator for the TCS. Because the transcriptome
study showed the TCS to be inducible by three of four tested
inhibitors of cell wall biosynthesis (8), it appears likely that this
regulation is part of the cell envelope stress response of E. faecalis.
A number of candidate regulatory systems have been identified by
comparative genomics and provide a good starting point for sub-
sequent investigations (37).

Several BceRS-BceAB-type resistance modules have been char-
acterized in detail and were always shown to be involved in pep-
tide antibiotic resistance (13, 17). Importantly, the TCSs always
rely on one of the transporters for stimulus perception and are
unable to induce their target genes in the absence of their trans-
porter (11, 12, 31, 32, 38). In most cases the transporter and TCS
are encoded in adjacent operons (15, 16), but in S. aureus and

Lactobacillus casei, some TCSs were shown to regulate the expres-
sion of a second transporter encoded elsewhere on the chromo-
some (31, 32). The situation in E. faecalis as identified in the pres-
ent study is even more complex, with not only the target
transporter but also the sensory transporter being encoded in a
different locus from the TCS. To our knowledge, this is the first
report where a regulatory interaction between a BceAB-like trans-
porter and BceRS-like TCS was shown for two systems not en-
coded together. Our findings further emphasize the widespread
occurrence of these resistance modules and show that the regula-
tory paradigm is conserved even if genomic arrangement is not.

As mentioned in the introduction, E. faecalis is likely exposed
to a range of antimicrobial peptides in the gastrointestinal tract of
humans and animals, which can be of host origin or produced by
other bacteria of the gut microflora. This raises a question regard-
ing the physiological substrate of the resistance network described
here. Most Bce-like modules analyzed so far are not specific for a
single substrate but instead recognize a range of often structurally
diverse peptides (17). In S. aureus, the human beta-defensin hBD3
and cathelicidin LL-37 have been identified as substrates of the
ApsRS-VraFG module (39), showing that the function of Bce-like
modules is not restricted to bacterially derived antimicrobial pep-
tides. Our initial screening experiments identified the lantibiotic
mersacidin as a second inducer of both enterococcal transporters,
and it is possible or even likely that other substrates exist. Partic-
ularly for a gut bacterium like E. faecalis, it will be interesting to

FIG 5 Functional reconstitution of the regulatory circuit in B. subtilis. Promoter regions of the transporter operons EF2050-2049 (top graphs) and EF2752-2751
(bottom graphs) were fused to luxABCDE and introduced into B. subtilis TMB1518. Additionally, the two-component system and transporter operons were
introduced under the control of a constitutive (PbceR) or xylose-inducible (Pxyl) promoter. The expression constructs present in each strain are illustrated above
the graphs, using the same shading as in Fig. 1. Exponentially growing cultures were exposed to different concentrations of bacitracin, given in the top leftmost
graph, and luminescence normalized to optical density (RLU/OD) was monitored over 60 min. Results are means plus standard deviations for two or three
biological replicates.
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test if any human antimicrobial peptides can induce expression of
the transporters identified here and if the resistance network im-
parts a selective advantage to the bacterium in the intestinal envi-
ronment.
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