










FIG 3 Example of the algorithm to determine the optimal log-linear decay for subject MQ-16, treated with mefloquine at 10 mg/kg (as a single dose).
Linear-regression fit of log10 parasitemia over time for each iteration of the algorithm. (a) The first iteration fits the regression model to all the data. (b) Best model
after removal of observations from either the lag or tail phase from panel a. The data show that the best fit corresponds to removal from the lag phase. (c) The best
fit is after removal of another observation from lag phase and continues on until panel j, where the final model fits a linear regression to the minimum 4
observations. A total of 10 iterations was performed, and the optimal model corresponding to the minimum P value is iteration 5 (f), which involved removing
the first three observations and the last observation shown in panel a. Pr, probability.
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ducted subsequent to this study in which we used the methodol-
ogy described here, we further optimized the logistic aspects of
undertaking IBSM studies and also integrated pharmacokinetic
and pharmacodynamic data to model the relationship between
these for experimental antimalarial drugs (unpublished). These
include optimizing the timing of administration of the test anti-
malarial so as to approach the maximal safe level of parasitemia in
this system, qPCR testing in triplicate, and rich sampling over the

first 24 h after drug administration. These improvements have
provided the opportunity to collect several data points before ap-
proaching the limit of quantification, thereby facilitating model-
ing while preserving volunteer safety. Factors such as timing of
drug administration to defined points in the parasite life cycle
have also been investigated. As a consequence of these improve-
ments, we rarely see subject-specific data failing quality assurance
by the methods described here.

FIG 4 Optimal regression models for sulfadoxine-pyrimethamine subjects, with significant regression fits.
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The method described here differs from the WWARN estima-
tor in a number of ways. First, our method is designed to enumer-
ate parasite density in blood by using qPCR rather than by micro-
scopic examination of blood slides. Handling of assay replicates
from qPCR-derived data requires defining a set of rules to deter-
mine outliers based on assay replicate variability, with a require-
ment to retest biologic samples where replicate variability falls
outside a prespecified range. However, in the rare situation where
a biologically implausible result is obtained (perhaps due to assay

failure or qPCR contamination), additional assessment of the
consistency of results with immediately preceding and succeeding
measurements as incorporated in the WWARN estimator could
be beneficial.

Second, our method specifically models and censors both the
lag and the tail phase within the iterative process. As articulated by
White (14), a robust method for defining the end of the lag phase
and the beginning of the tail phase is of major importance in terms
of defining the PRR. By including parasitemia values below the

FIG 5 Optimal regression models for subjects in the mefloquine study, with significant regression fits.

Marquart et al.

4256 aac.asm.org July 2015 Volume 59 Number 7Antimicrobial Agents and Chemotherapy

 on M
ay 19, 2019 by guest

http://aac.asm
.org/

D
ow

nloaded from
 

http://aac.asm.org
http://aac.asm.org/


limit of detection and nondetectable values, information about
the tail is retained and can provide a model for the entire decay
profile. By incorporating both right and left censoring and not
restricting ourselves to left censoring only, the proposed method is
not restricted to potential anchoring issues that may arise if too
much weight is given to the tail region. The right censoring of our
method can then remove any potential tails in a standardized way.
This differs from the WWARN calculator in that the last value
included in the model is determined by either replacing a nonde-
tectable value with the limit of detection or removing repeated
values below a threshold.

Third, our method is based solely on linear regression and does
not use tobit models to account for the potential censoring of
values below the limit of detection or nondetectable values. It has
been suggested that only substantial differences between the re-
sults of using a tobit regression and a linear regression will occur
when the last recorded parasitemia value before the censored
value is high (13). However, as our screening method incorporates
values below the limit of detection and nondetectable values, the
differences between the last parasitemia value and the censored
values is expected to be negligible. Finally, our proposed method
identifies and removes potential lag phases without the need to
incorporate higher-order polynomials and assess potential convex
curvature.

The PRR or the mathematically related parasite clearance half-
life should reflect the maximum rate of parasitemia reduction and
should specifically exclude the influence of the lag or tail phase
(Fig. 1) independently of their causation. The lag in drug effect is
not unique to antimalarial chemotherapy and can be drug related,
being influenced by the pharmacokinetic profile of the drug, i.e.,
to drug absorption into the circulation and/or distribution into
the efficacy biophase, in this case the blood. A number of malaria-
specific effects also apply. First, many antimalarials are believed to
exert their pharmacodynamic effect at specific phases in the par-
asite life cycle (25). Indeed, it is the loss of activity of the artemis-
inin antimalarials in the early stages of the parasite life cycle that is
believed to underlie the slow-clearance phenotype reported in the
Greater Mekong Delta. Another related consideration is that in
IBSM trials, parasitemia is synchronous; i.e., parasites are together
in the same life cycle stage. Therefore, administration of drug in a
clinical trial at different time points in the parasite’s 48-h life cycle
is likely to influence the lag effect. In addition to life cycle-specific
drug susceptibility, the effect of parasite sequestration and the
related rapid rise in parasite counts following erythrocyte rupture
may exert a confounding effect on the assessment of drug activity
if the lag phase is not objectively addressed.

Additional considerations apply at the tail of the parasite clear-
ance curve, specifically how to handle the limit of quantification
and limit of detection. Again, these issues are not unique to ma-
laria or to diagnostic pathology, and a literature regarding statis-
tical approaches to this issue exists (26, 27). However, the “tailing”
in parasitemia reduction can have specific relevance in malaria
beyond stochastic variation at the detection limit of the test or in
association with the statistical approach adopted to address the
issue. As concentration of the antimalarial falls below the mini-
mum parasiticidal concentration, the parasite reduction deceler-
ates and is observed as a tail. Tailing may occur at parasitemia
levels approaching the limit of quantification but also above the
limits of detection. The limit of quantification is determined as the
assay limits when replicate variance is greater than a coefficient of

variation of 20%. Parasitemia values at these levels can be consid-
ered inaccurate but informative. However, any trend observed
with these concentrations should be considered in light of their
inaccuracy.

It is important to differentiate between parasitemia values be-
low the limit of detection and nondetect values. The nondetect
values provide additional information about the tail phase of the
parasitemia decay profile, such as by identifying the first time
point that parasitemia levels are not detectable by qPCR. Tech-
niques to deal with values below the LOD exist and include sub-
stitution methods (20), quantile regression, and tobit regression
(28). The impact of substituting qPCR values below the LOD with
LOD/2 has been assessed by performing sensitivity analyses. The
sensitivity analyses considered different substitution techniques,

including no substitution, LOD⁄�2, and LOD. Sensitivity anal-
ysis suggests minimal difference in results of estimating both sub-
ject-specific and cohort-specific PRR values (results not shown).
There is scope for further work to appropriately include values
below the LOD.

To facilitate comparison, the data from studies analyzed here
were submitted for analysis using the WWARN estimator. Both
unprocessed and processed data for the two data sets were submit-
ted. The unprocessed data were defined as the raw mean of the
data from replicates, and the processed data were defined as the
cleaned and processed back-transformed mean of the log10 data
from replicates. In comparison to the WWARN method, our
method generally resulted in slope estimates that were within the
estimates based on the unprocessed and processed data (see Table
S4 in the supplemental material). In the S/P study, four subjects
(SP-02, SP-06, SP-10, SP-19) had significant models for both the
WWARN calculator and our method, and in one case (SP-02), the
results for the processed WWARN and our method were identical,
as there were no points below the LOD and no lag phase identified.
Three subjects (SP-08, SP-12, SP-17) were excluded from our
model yet could be analyzed in the WWARN calculator; con-
versely, three subjects (SP-05, SP-11, SP-24) could be analyzed in
our model but were excluded from analysis with the WWARN
calculator. Two subjects (SP-18 and SP-22) were not estimated in
either method. The cohort-specific PRR based on subjects with
significant regression models in our method (PRR � 38,878) was
within the WWARN estimates for the unprocessed (PRR � 1437)
and processed (PRR � 105,110) data. In the mefloquine study, all
subjects except for one (MQ-25) had significant models for both
the WWARN and our method. Subject MQ-25 was analyzed in
our model but was excluded from the analysis in the WWARN
method. The cohort-specific PRR for our method (PRR � 157)
was within the WWARN estimates for the unprocessed (PRR �
33) and processed (PRR � 228) data.

It is therefore reassuring that the two different methods for assess-
ing the pharmacodynamic activities of antimalarial drugs result in
estimates of similar magnitudes. It should be noted, however, that
significant processing of PCR data tested in replicate is required be-
fore input into the WWARN calculator. In this respect, with the field
moving toward molecular methods for parasite quantification, a
method such as the one described here or a modification to the
WWARN calculator to facilitate input of PCR-derived data would be
desirable.

The method described here enables detection of outliers based
on the variability within qPCR replicates. This is appropriate in
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most situations. However, there may be scenarios where there are
biological outliers at successive time points (i.e., subject MQ-08).
For example, in the method described by Flegg et al. (13), values
that were not consistent with the two immediately preceding and
succeeding measurements are censored, with consistency deter-
mined by comparing the rate of change in parasitemia at the time
point to the average rate in the subject profile. It is possible that an
additional check of consistency between time points could further
enhance the method described here. Equally, it should not be used
to exclude true variance outside these two phases. Parasitemia
responses that are intrinsically variable or display trends that are
not mono-exponential should be identified, and while a log-linear
regression is ideal, it should not be applied with exclusion of data
outside a true tail or lag phase.

The analytic method reported here is specific for the study of drug
action in IBSM. Although methodological aspects, such as replicates
and reproducibility, are of some relevance to IBSM studies, such as
those in which proof of parasitemia is the study endpoint and where
parasite multiplication rate in the setting of a blood-stage vaccine is
being tested, equally stringent methodological considerations will ap-
ply. This method documents the maximum velocity of parasite clear-
ance and does not capture the full pharmacodynamic relationship
between parasite and drug concentration, something that can be
done by more formal pharmacokinetic/pharmacodynamic analysis.
The outstanding pharmacodynamic characteristics include the lag
phase and drug potency. Drug potency is often characterized by the
50% inhibitory concentration (IC50), although in the malaria and
infectious disease area, the surrogates maximum parasiticidal con-
centration (MPC) and MIC are used. The MPC is the drug concen-
tration above which the parasite clearance is maximal; as drug levels
fall below it, the clearance decelerates. The approach described here
may also provide an estimate of MPC which can serve as prior infor-
mation for further analysis. The described log-linear regression re-
quired to calculate the PRR also identifies the period that the para-
sitemia displays a maximum log-linear clearance of parasites. The
time point marking the end of this regression (especially when recru-
descence may follow) may signal when the MPC is reached in the
drug concentration. Extension of this work should include additional
semimechanistic aspects added to the regression which serve to
model growth data (when it exists) and the onset of drug action,
including any synchronous behavior. A more comprehensive phar-
macokinetic/pharmacodynamic model-based approach should be
used for characterizing parasitemia and the influence of an antima-
larial. This will require further changes in collecting optimal data and
the collation of a model suitable for the simultaneous characteriza-
tion of drug pharmacokinetic profiles and the resultant pharmacody-
namic effects.

Conclusion. The statistical method that we have developed pro-
vides a robust method to objectively analyze qPCR-derived pharma-
codynamic data from CHMI studies. Application of this method in
studies aimed at assessing the activities of a range of experimental
antimalarial drugs now entering clinical trial will facilitate the selec-
tion of specific drugs to take further into development, as well as the
dose and dose regimen to be tested in phase II efficacy studies.
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