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Here we completely sequenced four mcr-1-haboring plasmids, isolated from two extended-spectrum-�-lactamase (ESBL)-pro-
ducing Escherichia coli and two carbapenemase-producing Klebsiella pneumoniae clinical isolates. The mcr-1-harboring plas-
mids from an E. coli sequence type 2448 (ST2448) isolate and two K. pneumoniae ST25 isolates were identical (all pMCR1-
IncX4), belonging to the IncX4 incompatibility group, while the plasmid from an E. coli ST2085 isolate (pMCR1-IncI2) belongs
to the IncI2 group. A nearly identical 2.6-kb mcr-1-pap2 element was found to be shared by all mcr-1-carrying plasmids.

The plasmid-mediated colistin resistance gene, mcr-1, has re-
cently been reported from animals and hospitalized patients in

China (1). Since then, mcr-1 has been found in �20 countries on
four different continents (2). Alarmingly, mcr-1 has also been
identified in several multidrug-resistant bacteria, including ex-
tended-spectrum-�-lactamase (ESBL)-producing and carbapen-
emase-producing Enterobacteriaceae (CPE) (3–9). However,
knowledge regarding the structure of mcr-1-harboring plasmids is
limited. Here we completely sequenced four mcr-1-harboring
plasmids (three of which are identical), isolated from two ESBL-
producing Escherichia coli and two carbapenemase-producing
Klebsiella pneumoniae clinical isolates (4).

In a recent study, we identified mcr-1 in two ESBL-producing
E. coli (SZ01 and SZ02) and two carbapenemase-producing K.
pneumoniae (SZ03 and SZ04) clinical isolates from a tertiary hos-
pital in eastern China (4). SZ01, SZ02, and SZ04 carry ESBL gene
blaCTX-M-55, while SZ03 and SZ04 harbor carbapenemase gene
blaNDM-5. Multilocus sequence typing (MLST) (10, 11) showed
that the two E. coli isolates, SZ01 and SZ02, belong to two unre-
lated sequence types (STs) (ST2448 and ST2085), while the two K.
pneumoniae strains (isolated from the same patient) both belong
to ST25. The mcr-1-harboring plasmids from all four isolates were
subsequently transferred to recipient strain E. coli J53 AZr via con-
jugation, along with the blaNDM-5-harboring plasmids from SZ03
and SZ04. Susceptibility testing revealed that the four mcr-1-har-
boring E. coli transconjugants were resistant to colistin but not to
any of the other antimicrobial agents tested. The two blaNDM-5

transconjugants were resistant to all �-lactams, except for aztreo-
nam, but remained susceptible to other classes of antimicrobial
agents (data not shown). The mcr-1- and blaNDM-5-harboring
plasmids from these transconjugants were extracted and subjected
to sequencing using the Illumina MiSeq platform (12). The se-
quencing reads were assembled de novo using SPAdes (13), and
gaps were closed by standard PCR and Sanger sequencing as de-
scribed previously (12).

The mcr-1-harboring plasmids from SZ01, SZ03, and SZ04
(subsequently named pMCR1-IncX4) were all identical, belong-
ing to the IncX4 incompatibility group, and were 33,287 bp in
length with a G�C content of 41.8%. The backbone of pMCR1-

IncX4 is similar to that of other IncX4 plasmids, including pJIE143
(GenBank accession no. JN194214) (14), pBS512_33 (CP001059),
pCROD2 (FN543504) (15), and pSH146_32 (JX258655) (16).
BLASTn analysis showed that pMCR1-IncX4 has a query coverage of
87% and maximal 97% identity to pSH146_32, isolated from a Sal-
monella enterica Heidelberg strain from a porcine diagnostic spec-
imen from Minnesota in 2002 (16), and a query coverage of 77%
and maximal 99% identity to pJIE143, isolated from an E. coli
ST131 strain from Australia in 2006 (14) (Fig. 1). Plasmid
pMCR1-IncX4 possesses a replication region highly similar to the
one on pJIE143 (Fig. 1), including the identical replication initia-
tion protein gene pir, vegetative origins oriV-� and oriV-�, and
highly similar oriV-� (one less iteron). The region from traM to
oriV-�, encompassing the majority of the transfer region and in-
cluding the taxABC and pilX operons, shares �99.9% nucleotide
identity with pMCR1-IncX4 and pJIE143 (Fig. 1). However, the
region in pMCR1-IncX4 between taxD and the histone-like nu-
cleotide-structuring protein gene hns, where colistin resistance
gene mcr-1 is located, is absent in pJIE143. In contrast, this region
is highly similar to that of pSH146_32, except for the insertion of
an mcr-1-pap2 element and an IS26 element in pMCR1-IncX4
(Fig. 1). A 2,610-bp mcr-1-pap2 fragment (nucleotides [nt] 2339
to 4948 in pMCR1-IncX4) was inserted into a hypothetical gene
(locus tag pSH146_32_13). Interestingly, insertion element
ISApl1, initially found to be associated with mcr-1 in pHNSHP45
(1), was not present in pMCR1-IncX4.
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The mcr-1-harboring plasmid from E. coli strain SZ02,
pMCR1-IncI2, belongs to the IncI2 group, the same plasmid in-
compatibility group as pHNSHP45, the first plasmid reported to
harbor mcr-1 (1). Plasmid pMCR1-IncI2 is 64,964 bp in length
and harbors 83 predicted open reading frames (ORFs), with a
G�C content of 42.7%. The plasmid backbone of pMCR1-IncI2
is similar to that of other IncI2 plasmids, such as pSH146_65
(GenBank accession no. JN983044)(16), pBK15692 (KC845573)
(17), and pHNSHP45 (KP347127) (1). BLASTn search results
showed that pMCR1-IncI2 exhibits only 86% query coverage and
97% overall identity to pHNSHP45. In addition, sequence align-
ment of both plasmids identified �1,400 nucleotide differences
(single nucleotide polymorphisms [SNPs]), suggesting that
pMCR1-IncI2 and pHNSHP45 are distinct, a finding that suggests
that the mcr-1 gene may be repeatedly acquired. Further analysis
showed that the mcr-1 gene in pMCR1-IncI2 integrated down-
stream of the nikB gene, in the same location as in pHNSHP45.
Similar to the analysis of pMCR1-IncX4, the mcr-1-associated
ISApl1 element was not found in pMCR1-IncI2 (Fig. 1).

Thus far, mcr-1 has been found in different plasmid incompat-
ibility groups, including IncI2 (1, 9), X4 (6, 18), HI2 (19), and P
(18). However, little is known regarding the mechanism whereby
this gene can be mobilized between different plasmids. We there-
fore compared the mcr-1 neighboring regions of pHNSHP45,

pMCR1-IncI2, and pMCR1-IncX4, as well as additional mcr-1-
harboring contig sequences from the NCBI WGS database (20,
21) (Fig. 2). The comparison identified a nearly identical 2,600-bp
region (nt 2349 to 4948 on pMCR1-IncX4) shared by all se-
quences examined, encompassing the mcr-1 and pap2 (encoding a
putative PAP family transmembrane protein) genes. Our analysis
suggests that the 2.6-kb mcr-1-pap2 element has been horizontally
transferred into different plasmid backbones (Fig. 2). Further in-
spection of the upstream and downstream junctions of this mcr-
1-pap2 element failed to identify any direct or inverted repeat
sequences. In pHNSHP45, ISApl1 is inserted directly upstream of
the mcr-1-pap2 element, and a 25-bp inverted reverse repeat is
located adjacent to the 2.6-kb element. The 25-bp invert repeat was
also identified at the same position in strain 2013LSAL02374, which
contains a contig with a sequence from an IncP plasmid (Fig. 2).
Consistent with the analysis of pMCR1-IncI2 and pMCR1-IncX4,
ISApl1 was not always associated with mcr-1, and it was absent in
several contigs belonging to the IncI2, IncX4, and IncP plasmids (Fig.
2). One possible explanation regarding the transfer mechanism of
mcr-1 is that the mcr-1-pap2 element was initially translocated by the
integration of ISApl1 (20), and the latter was subsequently lost follow-
ing integration. Nevertheless, the exact mechanism underpinning
mcr-1 transfer requires additional study.

In addition to the two aforementioned mcr-1 plasmids, we also
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FIG 1 Structures of plasmids pMCR1-IncX4 and pMCR1-IncI2. (A) Comparison of IncX4 plasmids pSH146_32 (GenBank accession no. JX258655),
pMCR1_IncX4 (KU761327, this study), and pJIE143 (JN194214); (B) comparison of IncI2 plasmids pHNSHP45 (KP347127) and pMCR1_IncI2 (KU761326,
this study). Colored arrows represent open reading frames, with dark blue, yellow, green, red, purple, and orange arrows representing replication genes, mobile
elements, plasmid transfer genes, the mcr-1 gene, other antimicrobial resistance genes, and plasmid backbone genes, respectively. Blue shading denotes regions
of shared homology among different plasmids.
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sequenced the two blaNDM-5-harboring plasmids from strains
SZ03 and SZ04, which were found to be identical and subse-
quently named pNDM5-IncX3. Plasmid pNDM5-IncX3 is 46,161
bp in length, with a G�C content of 46.7%, and harbors 58 puta-
tive ORFs. The sequence of pNDM5-IncX3 showed 100% query
coverage and overall �99.9% nucleotide identity to blaNDM-5-har-
boring plasmids pEc1929 (GenBank accession no. KT824791)
(22) and pNDM_MGR194 (KF220657) (23), as well as blaNDM-4-
harboring pJEG027 plasmid (KM400601) (24) and blaNDM-7-har-
boring plasmid pKpN01-NDM7 (CP012990) (25). Notably,
IncX3 plasmids harboring different blaNDM variants were fre-
quently found in different hospitals among isolates of different
multilocus sequence types and species in China (22, 26–28), sug-
gesting that IncX3 plasmids are the primary type of vector re-
sponsible for the wide dissemination of NDM metallo-�-lacta-
mases in China. Alarmingly, pNDM5-IncX3 was found to
coexist with pMCR1-IncX4 within the same clinical isolate
(strains SZ03 and SZ04), resulting in resistance to both colistin
and carbapenems (4).

In summary, this study characterizes two mcr-1-harboring
plasmids from ESBL-producing E. coli and carbapenemase-pro-
ducing K. pneumoniae. The identification of the same plasmid
(pMCR1-IncX4) in isolates of different species (SZ01, SZ03, and
SZ04) suggests that plasmid transfer is contributing to the dissem-
ination of mcr-1 in hospital settings in China. The potential for
further spread of mcr-1-harboring plasmids within multidrug-
resistant bacterial strains poses significant challenges for success-
ful clinical treatment and infection control strategies.

Nucleotide sequence accession numbers. The complete nu-
cleotide sequences of plasmids pMCR1-IncI2, pMCR1-IncX4,
and pNDM5-IncX3 have been deposited in GenBank under acces-
sion no. KU761326, KU761327, and KU761328, respectively.
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