




(interquartile range [IQR]) age was 33.9 months (29.2 to 40.2), and the median body
weight was 11.7 kg (10.9 to 12.9). The median (IQR) EFV dose was 24.4 mg/kg of body
weight (23.3 to 25.5). A total of 8 (16%), 26 (53%), and 15 (31%) children had 1, 2, and
3 plasma samples available, respectively.

Bayesian approach. The observed concentrations matched satisfactorily the sim-
ulated concentrations (see Fig. 1), suggesting that the observed data were well de-
scribed by the selected model. Thus, a maximum a posteriori probability (Bayesian
estimation) was made from this model to predict individual pharmacokinetic parame-
ters for EFV. Data with respect to values for Bayesian area under the concentration-time
curve (AUC), apparent total body clearance of the drug from plasma (CL/F), and C12 h

are presented in Table 3. Bayesian C12 h data are plotted in Fig. 2, where the CYP2B6
polymorphisms are distinguished.

In our study, only one C12 h value (0.95 mg/liter) was below the efficiency target (1
mg/liter). Most (61%) of the C12 h values were within the therapeutic range of 1 to 4

TABLE 2 Summary of HIV-1-infected children characteristics included in the PK EFV
substudy in pharmacokinetic evaluationsa

Characteristic Value(s)

Age (mo), median [IQR] 33.9 [29.2–40.2]
Body wt (kg), median [IQR] 11.7 [10.9–12.9]
Sex ratio 0.96

No. (%) of children with indicated CYP2B6 genotype
GG 14 (29)
GT 25 (51)
TT 10 (20)

aSex ratio data represent the ratio of males to females. IQR, interquartile range.

FIG 1 Visual inspection (Visual Predictive Check): comparisons among the 5th (lower dashed line), 50th
(solid line), and 95th (upper dashed line) percentiles obtained from the model described by Salem et al.
(14) and the observed data (points) for the MONOD trial.
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mg/liter. However, the C12 h values for 88% of the slow metabolizers (CYP2B6-516-T/T)
were above the limit of 4 mg/liter.

We did not notice any clinical seizures in terms of central nervous system (CNS)
toxicity among the 52 children switched onto EFV, but 1 child had persistent daytime
and nighttime sleeping disorders. EFV treatment of this child was then substituted after
9 months of treatment (18). At the PK evaluation visits, this child was not overexposed
with regard to EFV because his C12 h value was estimated at 1.9 mg/liter with the 25
mg/kg EFV dose and at 1.4 mg/liter with the 2016 FDA recommended dose.

Simulations and drug dosage evaluations. (i) Simulations and results that
would have been obtained if the children of the MONOD trial had received the
FDA recommended doses. Whichever the dosing scheme, i.e., the 25 mg/kg dose or
the 2016 FDA recommended EFV dose (200 mg for 7.5 kg to 15 kg), simulations showed
that the majority of C12 h values were within the therapeutic range for both dosages
(62.6% or 62.8%, respectively) (Fig. 3). However, there were more children underex-
posed to EFV with 2016 FDA recommended dose than with the 25 mg/kg dose (11.6%
versus 1.2%, respectively). Conversely, there were more concentrations above the
threshold of toxicity with the dose of 25 mg/kg (36.2% versus 25.6%). Among the
concentrations above the toxicity threshold, the majority were those seen with slow
metabolizers. Among the 12% of patients whose results were below the target effi-
ciency value for the 2016 FDA recommended EFV dose, the median [range] C12 h value
was 0.83 mg/liter [0.76 to 0.88].

(ii) Simulations and results that would have been obtained if children of the
MONOD trial had received the protocol P1070 recommended dose based on
genotyping. Simulations of C12 h values that would have been obtained if the children
of the MONOD trial had received the doses recommended by the P1070 protocol based
on the genotype are presented in Fig. 4B. The doses for slow metabolizers would
reduce their C12 h values to within or close to the therapeutic range. However, for
extensive metabolizers, the recommended dose with regard to CYP2B6 genotype

TABLE 3 EFV concentrations 12 h after drug intake (derived from Bayesian estimated
individual pharmacokinetic parameters) as a function of weight (n � 86)

Parameter C12 h (mg/liter) AUC0–24 (mg · liter�1 · h)a Cl/F (liter/h)

Median 2.66 80.44 3.52
Min 0.95 46.98 0.98
Max 14.06 279.19 7.02
aAUC0 –24, area under the concentration-time curve from 0 to 24 h.

FIG 2 EFV concentrations 12 h after drug intake (derived from Bayesian estimated individual pharma-
cokinetic parameters) as a function of weight. Crosses represent extensive metabolizers; circles represent
slow metabolizers. The gray lines represent the C12 h thresholds in adults.
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would lead to overexposure. Simulations of a 300-mg EFV dose regimen in all extensive
metabolizers allow having the majority of C12 h values in the therapeutic range (Fig. 4C).
With the recommended P1070 dose for extensive metabolizers, 66% of C12 h values are
in the EFV adult target range, whereas 75% of C12 h values are in the therapeutic range
with a 300-mg EFV dose regimen.

DISCUSSION

The MONOD ANRS 12206 trial assessed a simplified once-daily cART based on EFV
versus a twice-daily regimen based on lopinavir/ritonavir in children between 2 and 4
years of age in West Africa. In this subanalysis, we studied EFV pharmacokinetics to
assess the appropriateness of the MONOD ANRS 12206 drug dosages (25 mg/kg of
body weight/day).

For the study analysis, a Bayesian approach was preferred to the development of a
new pharmacokinetic model given the robust EFV population pharmacokinetic models
previously published in similar populations. The model selected was developed in 96
HIV-infected children (a total of 3,172 observations) who participated in Pediatric AIDS
Clinical Trials Group 382 (14). This model took into account the developmental changes
that occur during childhood by inclusion of weight- and age-related effects on the
apparent clearance and volume of distribution parameters. This model includes also the
CYP2B6-G516T polymorphism, which influences oral clearance. In addition, evaluation
of EFV PK parameters with our data provided estimates similar to those reported by
Salem et al. (14). We used the therapeutic pharmacokinetic thresholds previously
associated with EFV virological efficacy and toxicity in adults (20) to evaluate the
protocol drug dosages as well as the 2016 FDA dosing guidelines for HIV-infected
children. This target, established by Marzolini et al. (20), relates to the concentrations in
the middosing interval. Indeed, it was established on the basis of the results of a study
on samples taken between 8 and 20 h after dose intake and is difficult to apply in
clinical practices. This target was subsequently taken up as a target for the 12-h time
point (22, 23).

FIG 3 Simulations of EFV C12 h Bayesian concentrations as a function of weight for the 2016 FDA recommended dose (200-mg dose
regimen for children weighing 7.5 kg to 15 kg) (left) and for the dose regimen (25 mg/kg) (right). Crosses represent extensive
metabolizers; circles represent slow metabolizers. The gray lines represent the C12 h thresholds in adults.
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The dose of 25 mg/kg was chosen because there were no dosing regimen recom-
mendations in children less than 3 years old (4). The allometric scale described in the
model of Salem et al. supports a weight-based dosing recommendation. The dose
prescribed by the FDA indicates dosage in milligrams, but these recommendations are,
notwithstanding, based on weight because it is provided for different weight bands.
Here, we evaluate a restricted class of weights ranging from 8 to 15 kg. According to
simulations, in this weight band, the 2016 FDA recommended dose showed a satisfac-
tory percentage of C12 h values in the therapeutic range given the high between-
subject variability in the EFV PK.

The simulations showed that the 25 mg/kg dose and the 2016 FDA recommended
dose provided similar rates of C12 h values within the therapeutic range but that more
children were underexposed with the FDA recommended dose. Conversely, there were
more concentrations above the toxicity threshold using the dose of 25 mg/kg. In the
MONOD trial, EFV neurological toxicity was very difficult to assess. Only one neurolog-
ical toxicity event led to treatment interruption. These data may provide useful insights
into the current knowledge of EFV PK and toxicity. With the 25 mg/kg/day dose
regimen, only one concentration was lower than the efficacy threshold. With the 2016
FDA recommended dose, there was a higher rate of C12 h values lower than 1 mg/liter
but all of those C12 h values were greater than 0.75 mg/liter. Whatever the dose, almost
all of the slow metabolizers had C12 h values greater than 4 mg/liter. The 2016 FDA

FIG 4 Simulations of EFV C12 h Bayesian concentrations as a function of weight. (A) Without regard to CYP2B6 genotyping (FDA recommendations): 200 mg
for children weighing 7.5 kg to 15 kg. (B) With regard to CYP2B6 genotyping (protocol P1070 research dose): for extensive metabolizers, 400 mg for children
weighing 7 kg to 14 kg and 500 mg for children weighing 14 to 15 kg; for slow metabolizers, 100 mg for children weighing 7 kg to 14 kg and 150 mg for children
weighing 14 to 15 kg. (C) Simulation of a more appropriate dose for extensive metabolizers: for extensive metabolizers, 300 mg for children weighing 7 kg to
15 kg; for slow metabolizers, 100 mg for children weighing 7 kg to 14 kg and 150 mg for children weighing 14 to 15 kg. Crosses represent extensive
metabolizers; circles represent slow metabolizers. The gray lines represent the C12 h thresholds in adults.
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recommended dose seems to be a good compromise to avoid overexposure in
genotype TT carriers for CYP2B6-G516T polymorphisms without a high risk of under-
exposure. A supplemental protocol P1070 recommendation based on genotype is also
available but appeared very difficult to apply because genotyping is not a common
practice, especially in Africa. However, this supplemental dose recommendation would
help return doses to the therapeutic range for children who are slow metabolizers but
would overexpose a part of the population of extensive metabolizers. A dose of 300 mg
would be more appropriate in extensive metabolizers according to our simulations.

EFV is a good candidate for therapeutic drug monitoring (TDM) (24–27). In fact,
plasma concentrations are characterized by high interindividual variability. Low con-
centrations have been linked with viral nonsuppression and high concentrations with
toxicity. TDM remains an important tool to detect patients in treatment failure or slow
metabolizers, who are at risk of toxicity. In African countries, where TDM is not routinely
feasible, methods need to be implemented to prevent the risks associated with the use
of efavirenz. Thus, Van de Wijer et al. suggested that, to counter underdiagnosis of
neuropsychiatric and neurodevelopmental side effects, screening must be made a high
priority in daily practice for children treated with efavirenz and it must be closely linked
to adequate care (28).

In conclusion, with both the 25 mg/kg EFV dose used in the MONOD trial and the
2016 FDA recommended EFV dose, the objective was achieved in terms of efficacy and
toxicity. The dosage recommended by the FDA could be more appropriate because it
causes less overexposure. In addition, the FDA recommendations seem easier to
implement.

MATERIALS AND METHODS
Study design. The MONOD-ANRS-12206 project is an international, noninferiority, open-label phase

3 randomized clinical trial conducted after an initial 12 months of cART in a therapeutic cohort in
Ouagadougou, Burkina Faso, and in Abidjan, Côte d’Ivoire (ClinicalTrials registration no. NCT01127204)
(18). The protocol was approved by the Comité d’Éthique pour la Recherche en Santé du Burkina Faso
and by the Comité National d’Éthique et de la Recherche en Côte d’Ivoire. Children were included in an
initial prospective cohort that received a lopinavir-based triple therapy twice daily for 12 months.
Children with confirmed viral suppression (HIV-1 RNA, �500 copies/ml) after 12 months on cART were
randomized at 13 months into two parallel arms, with one arm maintaining the lopinavir-based therapy
and one arm switching to a EFV strategy of once-daily administration until the time point of 25 months
was reached. Children received EFV in soluble form at a dose of 25 mg/kg of body weight once daily.

Study procedures and analytical methods. Patient data were followed up prospectively from
inclusion (at cART initiation) with monthly visits until 25 months. Demographic and clinical variables,
including age, sex, body weight, time of administration, and time of sampling, were recorded. Pharma-
cokinetic samples were taken at 6 months and 12 months postrandomization in the EFV arm. For each
sampling occasion, one or two samples per child were taken.

EFV plasma concentrations were measured by the use of a previously published method of high-
performance liquid chromatography (HPLC) performed with a UV detector (Waters, Barcelona, Spain)
(19).

Pharmacogenetics studies. Genomic DNA was isolated from saliva collected with ORAgen kit swabs
(DNA Genotek, Ottawa, Canada), using a PrepIT DNA extraction kit according to the instructions of the
manufacturer (DNA Genotek, Ottawa, Canada). Briefly, cells were heated 1 h at 50°C. Proteins were then
precipitated with the precipitating solution on ice and centrifuged. Supernatants were harvested, and
DNA was precipitated by adding 100% ethanol followed by centrifugation. DNA pellets were washed
with 70% ethanol and then dried and were finally dissolved in hydration solution and quantified using
a NanoVue spectrophotometer (Nano Drop Technologies, USA).

CYP2B6 G516T (rs3745274) was genotyped using TaqMan genotyping assays (Applied Biosystems,
CA, USA) and an ABI 7500 system (Applied Biosystems, Foster City, CA). Quantitative PCR (qPCR) analyses
were performed in a 25-�l volume with 20 ng of DNA using TaqMan Universal master mix II. The thermal
cycling comprised 50 cycles of 15 s at 92°C and 1 min at 60°C. Analysis was performed using Sequence
Detector software (SDSv2.0; Applied Biosystems, CA, USA).

Population pharmacokinetic analysis and modeling. Nonlinear mixed-effect modeling (i.e.,
NONMEM) was used to compute Bayesian estimates of individual subject parameters using the patient
data and assuming previously reported population PK model and parameter values. Population param-
eters were not reestimated. The first-order conditional estimation with interactions method was used in
the estimation step, with the maximum number of function evaluations set to 0. EFV individual predicted
concentrations (IPREDs) were derived from the model published by Salem et al. (14). This model was
established using a population of children comparable to patients included in the MONOD-ANRS-12206
trial. The authors reported that a one-compartment model, with first-order absorption and elimination
rate constants, that used weight-based allometric scaling for oral clearance and apparent volume of
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distribution adequately described their data. A sigmoid maximum effect (Emax) maturation model
demonstrated an increase in oral clearance with age that reached 90% of the mature level by the age
of 9 months. Furthermore, the CYP2B6-G516T polymorphism decreased oral clearance. Children with the
CYP2B6-516-TT genotype were found to have a CL/F value 51% lower than that shown by patients
carrying the GT or TT genotype following a recessive genetic model. An external evaluation of the model
published by Salem et al. (14) was first performed using our data. Concentrations measured in the
MONOD trial were superimposed on the 5th, 50th, and 95th percentiles of the simulated concentrations
obtained with the model of Salem et al. A visual inspection was then performed. Thus, a maximum a
posteriori probability (Bayesian estimation) result was obtained from this model to predict individual
pharmacokinetic parameters for EFV. IPREDs were determined for each patient in the MONOD data set
for the available sampling times, given dosage history, age, body weight, and CYP2B6-G516T covariate
values. The middose concentration (C12 h) was derived for each patient.

During the trial follow-up period, CNS toxicity was routinely monitored clinically, looking monthly for
sleeping disorders and seizures.

Assessment of MONOD and FDA drug dosages. To assess results of comparisons between
regimens, we calculated the percentage of children with (i) EFV middose concentrations (C12 h) below 1
mg/liter and (ii) EFV middose concentrations above 4 mg/liter. These thresholds have been shown to be
associated with EFV virological efficacy (7, 8, 11, 20, 29) or EFV toxicity (20, 30) in HIV-infected adults. The
individual pharmacokinetic parameters from all participants were used to simulate the 2016 FDA dosing
guidelines without regard to CYP2B6 genotype and to simulate the protocol P1070 dose of EFV
according to the CYP2B6 genotype (Table 1).
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