Reduced susceptibility of *Haemophilus influenzae* to the peptide deformylase inhibitor LBM415 can result from target protein overexpression due to amplified chromosomal *def* gene copy number.

Charles R. Dean1*, Shubha Narayan1, Joel Richards1#, Denis M. Daigle1, Stacy Esterow1, Jennifer A. Leeds1, Heather Kamp1+, Xiaoling Puyang1, Brigitte Wiedmann1, Dieter Mueller2, Hans Voshol2, Jan van Oostrum2, Daniel Wall3, James Koehn3, JoAnn Dzink-Fox1 and Neil S. Ryder1

Running title: peptide deformylase overexpression in *H. influenzae*

Infectious Diseases1, Genome and Proteome Sciences2, and Discovery Technologies3, Novartis Institutes for Biomedical Research, Cambridge, MA, 021391,3 and Basel, Switzerland 40022.

* corresponding author. Mailing address: Infectious Diseases, Novartis Institutes for BioMedical Research, 100 Technology Square, Cambridge MA 02139. Phone: 617-871-3150. Fax: 617-871-7047. E-mail charlesr.dean@novartis.com

+ - current address: Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston MA 02115

- current address: Massachusetts Department of Public Health, Boston MA 02108
Previous genetic analysis of *Haemophilus influenzae* revealed two mechanisms associated with decreased susceptibility to the novel peptide deformylase inhibitor LBM415; AcrAB-TolC mediated efflux, and Fmt bypass, resulting from mutations in the pump repressor geneacrR or in the fmt gene, respectively. We have isolated an additional mutant, CDS23 (LBM415 MIC 64 μg/ml vs 4 μg/ml against the parent strain NB65044) that lacks mutations in the acrR or fmt structural genes, or in the gene encoding Def, the intracellular target of LBM415. Western immunoblot analysis, 2D gel electrophoresis and tryptic digestion combined with mass spectrometric identification showed that the Def protein was highly overexpressed in the mutant strain. Consistent with this, real time RT-PCR revealed a significant increase in def transcript titer. No mutations were found in the region upstream of def that might account for altered expression, however, pulsed field gel electrophoresis suggested that a genetic rearrangement of the region containing def had occurred. Using a combination of PCR, sequencing and Southern blot analyses, it was determined that the def gene had undergone copy number amplification, explaining the high level of target protein expression. Inactivation of the AcrAB-TolC efflux pump in this mutant increased susceptibility 16-fold, highlighting the role of efflux in exacerbating overall reduced susceptibility resulting from target overexpression.
INTRODUCTION

In recent years there has been a growing appreciation of the need for new antibiotics targeting novel bacterial functions, to combat the spread of resistance to currently used antibiotics. The result of one effort to develop such a compound is LBM415, a potent low molecular weight inhibitor of bacterial peptide deformylase that shows promising antibacterial activity against many drug resistant bacteria (9, 12, 34).

Two main mechanisms mediating resistance to peptide deformylase inhibitors in bacteria have been described. The first is amino acid substitutions within the target protein (Def) (17) and the second is “FMT bypass” (4, 18) which results from mutational loss of methionyl tRNA formyltransferase (Fmt). Loss ofFmt function reduces or eliminates formylation of the initiating methionyl-tRNA$^{f_{met}}$. In many bacteria, the initiation of protein synthesis still occurs in the absence ofFmt function (1, 18, 20, 33) but the deformylation step mediated by peptide deformylase is then unnecessary (i.e. the formylation-deformylation cycle is bypassed), leading to insusceptibility to peptide deformylase inhibitors (4, 18). Recently, amino acid substitutions in the FolD component of the folate biosynthesis pathway have been shown to confer resistance to the peptide deformylase inhibitor actinonin in Salmonella enterica, presumably as a result of reduced formylation of methionyl-tRNA$^{f_{met}}$ due to interference with synthesis of the formyl group (22).

Given the potency of LBM415 against the respiratory pathogen S. pneumoniae and other Gram positives (9), there is interest in potential coverage of the respiratory pathogen Haemophilus influenzae by peptide deformylase inhibitors. Although not as active against this organism, LBM415 has MIC$_{90}$ (determined for 300 isolates) of 4-8
μg/ml (9). The lower intrinsic susceptibility of *H. influenzae* to LBM415 appears to be the result of AcrAB-TolC mediated efflux (6).

In *H. influenzae*, increased AcrAB-TolC mediated efflux (6) and FMT bypass (14) resistance mechanisms have been selected through exposure to LBM415. Each of these mechanisms confers a characteristic phenotype: efflux mutants (associated with amino acid substitutions within the pump repressor AcrR) have decreased susceptibility to LBM415 and to structurally unrelated pump substrates (e.g. clindamycin) (6). FMT bypass reduces susceptibility to a variety of peptide deformylase inhibitors with no decrease in susceptibility to AcrAB-TolC pump substrate antibiotics (14). There is also a pronounced *in vitro* growth defect associated with mutational loss of fmt. A potential third mechanism was observed in an isolate resulting from single step selection upon medium containing LBM415. This mutant had no cross-resistance to AcrAB-TolC pump substrates and did not exhibit any significant growth impairment or morphological changes. Supporting this, no mutations were found in the structural genes encoding AcrR, Fmt or the target protein Def. In this study, we determined the mechanism of resistance in this mutant.
MATERIALS AND METHODS

Bacterial strains and growth media

H. influenzae strain NB65044 is RdKW20 (ATCC 51907) (8). Strain CDS23 was selected by single step exposure of NB65044 to LBM415 incorporated into chocolate agar at 16 μg/ml. Strain CDS01 is NB65044 with acrB insertionally inactivated (6). Strain CDS41 is strain CDS23 with the acrB gene insertionally inactivated as previously described (6). Cultures were routinely grown on chocolate agar, supplemented with LBM415 at 16 μg/ml as necessary. Liquid cultures were grown in Haemophilus test medium (HTM, Remel) or supplemented brain heart infusion (sBHI) (6).

DNA manipulation

H. influenzae genomic DNA was isolated using the Puregene tissue kit (Gentra Systems Inc., Minneapolis, MN) according to the manufacturers instructions. Oligonucleotides for PCR and sequencing (Table 1) were obtained from Genelink (Hawthorne, NY). PCR reactions were carried out using the Easystart mix-in-a-tube system (Molecular Bio-Products Inc, San Diego, CA) according to the supplied instructions. Prepared genomic DNA or cells from isolated colonies were used as template in PCR reactions and each reaction contained 2 μl genomic DNA or suspended cells (in dH₂O), 2 μl of an 8 μM stock of each primer, 1 μl Taq DNA polymerase and 18 μl dH₂O. PCR cycles were as follows: 95°C, 2 min; 25 cycles of 95°C, 30 sec, 55°C 30 sec; 72°C, 10 min; hold at 4°C. Restriction endonucleases and modifying enzymes were used according to the instructions supplied with the enzymes. DNA fragments were purified, or isolated following agarose gel electrophoresis, using the QIAquick PCR cleanup or gel extraction
kits (Qiagen Inc., Valencia, CA) as specified in the instructions. Nucleotide sequencing was done by Agencourt Inc. (Beverly, MA). Sequence analysis was done using the Sequencher 4.2 (Genecodes Corporation, Ann Arbor MI) and Vector NTI suite 9 (Invitrogen) software packages.

Southern blotting

H. influenzae genomic DNA was restriction digested overnight, separated on 0.7 % agarose gels and transferred to Genescreen charged nylon membrane (NEN Life Science Products, Boston MA). Transfer of nucleic acid to the membrane, probe labeling, hybridization and detection were carried out using the ECL direct nucleic acid labeling and detection system (Amersham Life Sciences, Cleveland OH) according to the low stringency protocol supplied with the kit. The probe encompassing *def* used in southern blot experiments was an approximately 700 bp PCR fragment generated using primers DEF HI F1 and DEF HI REV (Table 1).

Isolation of protein extracts for 2D gel electrophoresis and mass spectrometry

H. influenzae from overnight chocolate agar plates (Remel) was used to inoculate 100 ml HTM broth (Remel) to an OD$_{600}$ of 0.04. Cultures were grown at 37 °C with shaking to mid log phase and the cells were collected by centrifugation. Pellets were washed twice with phosphate-buffered saline and frozen in liquid nitrogen. Frozen pellets were then thawed and resuspended in 1 ml modified Rabilloud buffer (30 mM Tris pH 8, 7 M urea, 2 M thiourea, 4 % wt/vol CHAPS and one complete protease inhibitor tablet (Roche diagnostics) per 50 ml buffer) (16, 25) and sonicated on ice using a Branson model 250 digital sonifier (amplitude 25%; 3 cycles of: 0.8 sec on, 1.2 sec off, 24 seconds total). Insoluble debris was removed by centrifugation at 13 000 x g and supernatants were stored at -80 °C.
Two-dimensional gel electrophoresis

Two-dimensional electrophoresis of bacterial lysates was carried out according to established procedures (11). For the first dimension IPG strips, 500 - 600 μg of the lysate was diluted to 500 μl with Rabilloud buffer (7M urea, 2M thiourea, 4% CHAPS, 1% DTT, and 2% Pharmalytes 3-10) and loaded onto 24 cm pH 4-7 linear IPG strips (GE Healthcare) by reswelling the strips in sample solution (31). Iso-electric focusing was performed on the Multiphor II apparatus (GE Healthcare, 18-1018-06) for approximately 60 kVh at 20 °C, using the following voltage gradient: (i) 3 h 300 V, (ii) 5 h linear gradient from 300 to 3500 V and (iii) continue at 3500 V until target kVh. After focusing, IPG strips were equilibrated as described (11), with 2% DTT in the first step and 5% iodoacetamide in the second step. For the second dimension, IPG strips were applied to 23 x 27 cm SDS-PAGE gels (12 % T, 2.6 % C), which were run overnight at 100 V and 15 °C in a Dodeca electrophoresis chamber (Bio-Rad). Gels were stained with Sypro Ruby (11) or with colloidal Coomassie Blue G-250 (2).

In-gel trypsin digestion

Excised spots were in-gel digested with modified porcine trypsin (V5111, Promega, Madison WI, USA) as described (2), using a microtiter plate format (CB080, Proxeon, Odense, DK). Spots were finally eluted with 5% formic acid and tryptic hydrolysates collected in a second microtiter plate. For MALDI-MS and -MSMS analysis, the tryptic peptides were purified on ZipTips (Millipore Corporation, Bedford, MA, USA) using a Tecan Genesis ProTeam 150 system (Tecan, Maennedorf, Switzerland). After washing with 2 x 5 μL 80 % ACN, 0.1 % TFA the tips were equilibrated with 2 x 5 μL 0.1 % TFA and the hydrolysate was applied; after washing with 4 x 5 μL 0.1 % TFA, peptides were directly eluted onto ABI 4700 MALDI targets (100 well plates) with 2 μL of a solution of
α-cyano-4-hydroxycinnamic acid matrix (5 mg/ml in 50% ACN, 0.1 % TFA containing 2mM NH₄H₂PO₄) applied to the backend of the ZipTips.

MALDI-MS and MSMS

MALDI spots were analyzed using the Applied Biosystems 4700 Proteomics Analyzer (ABI, Framingham, MA, USA) in automated, combined MS and MSMS mode. Both MS and MSMS data were acquired with a Nd:YAG laser with 200 Hz repetition rate; 2000 shots were accumulated for each spectrum in MS mode and 4000 shots for each of up to 5 precursor ions in MSMS mode. For MSMS, the 5 most intense precursor ions with a signal/noise ratio > 25 were selected after exclusion of common background signals. MSMS mode was operated with 1 keV and products of metastable decomposition at elevated laser power were detected. MS data were acquired with close external calibration and MSMS data using default instrument calibration. Database searches were performed using the Mascot search engine integrated in GPS Explorer 2.0 (part of the ABI 4700 Proteomics Analyzer).

RNA isolation, microarray analysis and real time RT-PCR

H. influenzae NB65044 and CDS23 were grown in 50 ml HTM broth at 37 °C with shaking to an OD₆₀₀ of approximately 0.5. Ten milliliters of culture were removed and mixed with 20 ml RNA protect reagent (Qiagen Inc., Valencia, CA), incubated at room temperature for 10 minutes and centrifuged for ten minutes to collect the cells. RNA was isolated from the cell pellets using the Purescript Tissue kit (Gentra Systems Inc., Minneapolis, MN) according to the supplied instructions (scaled for the amount of cells used). Approximately 80 μg RNA from these preparations was then further purified and size fractionated using RNeasy minicolumns (Qiagen Inc., Valencia, CA), incorporating
the on-column DNaseI digestion step according to the supplied protocols. RNA was analyzed as previously described using custom design Affymetrix microarrays incorporating all open reading frames and intergenic regions derived from the genome sequence of *H. influenzae* strain RdKW20 (6). Primers and probes for real-time RT-PCR (Table 1) were designed using Primer Express v. 2.0 software (Applied Biosystems, Foster City, CA) and were synthesized by Applied Biosystems Assays by Design service. The *def* transcript titers were determined by real-time RT-PCR analysis using the EZ-RT-PCR Core Reagents kit (Applied Biosystems) based on a one-step RT-PCR for RNA quantitation on an Applied Biosystems PRISM model 7500 Sequence Detection system. Relative quantitation was done by the comparative cycle threshold (CT) method using both the endogenous internal control *rpsL* (ribosomal protein S12) and *acrB* (encoding an RND efflux pump) that were both shown by transcriptional profiling to be invariant in this study (data not shown). Cycle threshold (CT) values were calculated using Applied Biosystems Sequence Detection software v.1.2.2. For each one-step RT-PCR run, 10 μl (10 ng) of total RNA isolated from either *H. influenzae* NB65044 (parent strain) or CDS23 were added (based on a preliminary titration experiment) to a reaction mixture prepared on ice containing 1X EZ-RT-PCR TaqMan buffer, 3 mM manganese acetate, 300 μM dATP, dCTP and dGTP, 600 μM dUTP, 0.9 μM of forward and reverse primers (Table 2), 0.25 μM fluorogenic TaqMan-labeled probe (Table 2), and 5U of rTth DNA polymerase in a final volume of 50 μl. Each sample was analyzed in triplicate. The thermocycling conditions were as follows: 60 °C for 30 min, 95 °C for 5 min, followed by 45 cycles of 95 °C for 15 s and 60 °C for 1 min. A preliminary experiment was performed to show that both the target and endogenous control transcripts (*def, rpsL* and *acrB*, respectively) were amplified with approximately equal efficiencies. Standard PCR
reactions did not amplify *acrR* and *def* from these RNA samples (1 cycle of 95 °C for 3 min, 45 cycles of 95 °C for 1 min, 55 °C for 1 min and 72 °C for 1 min, followed by a final extension step at 72 °C for 10 min using Accuprime GC-rich DNA polymerase (Invitrogen, Carlsbad, CA)) did not generate products indicating there was no significant DNA contamination.

PFGE

Pulsed field gel electrophoretic analysis of *H. influenzae* strains was conducted using standard methods (24).

Antimicrobial susceptibility testing

Antibiotic MICs were determined by broth microdilution using twofold dilution in Haemophilus test medium (HTM; Remel) in accordance with protocols established by the CLSI (Formerly NCCLS) (19). LBM415 (6) was synthesized at Novartis Institutes for Biomedical Research. All other antibiotics were obtained from Sigma (St. Louis, MO).
RESULTS

Strain CDS23 overexpresses peptide deformylase. Mutant strain CDS23 was selected on chocolate agar plates containing 16 μg/ml LBM415. This strain was significantly less sensitive to LBM415 (MIC 64 μg/ml vs 4 μg/ml for the parent NB65044). There was no change in susceptibility to structurally unrelated substrates of the AcrAB-TolC efflux pump (e.g. clindamycin), known to mediate mutationally acquired decreased susceptibility to LBM415 (6). Consistent with this, there was no mutation in the repressor of *acrAB* expression, AcrR. Strain CDS23 did not exhibit the pronounced growth deficit on chocolate agar plates typical of Fmt bypass mutants (14), and no mutation was found in *fmt*, the structural gene encoding methionyl-tRNA^{fmet} formyltransferase. Finally there was no mutation found in *def*, encoding peptide deformylase, indicating that the reduced susceptibility was not the result of amino acid substitutions within the target protein. This suggested that the target, Def, might be overexpressed in the mutant. Supporting this, Western immunoblots using polyclonal antiserum raised against purified *E. coli* Def revealed a dramatic increase in a cross-reactive protein of a size corresponding to Def in CDS23 compared to strain NB65044 (data not shown). To verify the identity of the overexpressed protein as Def, two-dimensional gel electrophoresis of protein extracts from these strains was conducted, revealing large increases in the level of two protein spots (Figure 1B). These were excised and subjected to tryptic digest and mass spectrometry and confirmed as Def. A third spot of much lower intensity, corresponding to another isoform of Def, was detected in some samples at a more basic position (data not shown). The presence of two major spots confirmed as Def indicated that two distinct forms of peptide deformylase were present, which were identified by MS not only in the mutant but also in the wild type.
sample (Figure 1, panel A). A characteristic of peptide deformylase enzymes generally is a propensity for oxidation of an active site cysteine residue (10, 13, 26). A partially purified sample containing the two forms of Def shown in Figure 1B was gluC digested and analysed by LC-MSMS which confirmed the oxidation of C91 to cysteic acid (GCLSIPGRALVPRKE), consistent with these previous observations.

The def transcript titer is dramatically increased in CDS23. The large increase in Def protein expression observed in strain CDS23 suggested that the def transcript titers might be dramatically increased as well. Microarray experiments revealed an approximately 5-fold increase in def transcript titer, with up to 10-fold for the intergenic region upstream of def (data not shown). This clearly indicated an increase in def titer in the mutant but it did not correlate well with the dramatic increase in protein expression observed. The individual def probe signals from the microarrays gave extremely intense signals suggesting that probe saturation was occurring, limiting the observable fold change that could be obtained from microarrays under normal sample loading conditions. To clarify this, the same RNA samples were tested by real time RT-PCR experiments which showed a circa 1000-fold higher abundance of def transcripts in CDS23 over the parent strain (946 +/- 13.8 and 1010 +/- 5.2 fold for two biological samples when using rpsL as internal reference; 981.5 +/- 10.7 and 1015.5 +/- 12.9 fold when using acrB as internal reference).

Def overexpression is the result of amplified def gene copy number. Since the def transcript titer was very high in strain CDS23, the upstream promoter region was sequenced to check for mutations, but none were found between def and the upstream 5S rRNA gene (Figure 2). To verify that CDS23 was indeed derived from NB65044, both strains were analyzed by PFGE. The ApaI restriction pattern differed by one band.
between these strains (Figure 3, panel C), which was increased in size in CDS23, indicating that there had been a genetic rearrangement in CDS23. Plotting an *ApaI* restriction map for the genome sequence of NB65044 using Vector NTI 9 software revealed that the band of increased size encompassed *def*. In addition, generating *def* by PCR from CDS23 invariably produced the expected product but with additional bands of increased size. This phenomenon also occurred when using primer pairs consisting of an internal *def* primer and primers specific for the regions upstream (23S rRNA) or downstream (*fmt*) of *def* (Bands A2 and B2, Figure 2D). This suggested that multiple priming sites for *def*-specific primers existed, consistent with the presence of multiple, adjacent, head-to-tail copies of *def*. Isolation, cloning and sequencing analysis of bands A2 and B2 confirmed this to be the case, with adjacent copies of *def* separated by the 5S rRNA normally located immediately upstream of *def* (Figure 2 B and C). This indicated that the estimated 30 kb increase in size of the *def* containing PFGE restriction fragment (Figure 3C) likely resulted from the generation of multiple copies of *def* (est. 30 – 50 extra copies) between the upstream *rrn* locus and *fmt*. Sequencing revealed the presence of *NdeI* sites between the copies of *def* present contained on fragments A2 and B2 (Figure 2 B and C). Therefore, digestion of CDS23 genomic DNA with *NdeI* was predicted to result in the release a significant amount of an approximately 934 bp fragment containing *def*. Southern blot analysis of *NdeI*-digested genomic DNA isolated from NB65044 and CDS23 showed the presence of a highly emphasized band of the anticipated size hybridizing with a *def* probe (Figure 3B, Lane 2), confirming the presence of multiple copies of *def* separated by this restriction site. Indeed, the appearance of this band is visible in ethidium bromide stained gels (arrow, Figure 3A), consistent with a significant expansion of *def* copy number. Extraction of this band and sequencing confirmed its identity as the predicted *def*-containing *NdeI* fragment (indicated in Figure 3). Therefore,
Def protein overexpression is mediated by a large increase in chromosomal def copy number. The larger def-containing Apal band observed by PFGE for the mutant was less intense than other bands (Figure 3C, Lane 2), and there was a faint smear in this region, suggesting that there is a heterogenous population of Apal bands with different copy numbers of def. This in turn suggests that this region is flexible and can expand or contract, a phenomenon previously described for regions containing gene amplifications (7, 27, 28, 32). Consistent with this, PFGE of one CDS23 sample that had been grown in liquid medium containing LBM415 prior to frozen storage showed a larger increase in the size of this band (Figure 3C, Lane 3), possibly the result of maintaining the selective pressure to maintain a higher copy number. Because of this flexibility, a precise determination of def copy number was not possible. The presence of multiple adjacent copies of def could, however, explain the extreme 1000-fold increase in def transcript titer determined by real time RT-PCR (described above) since this arrangement would be expected to generate multiple transcripts, each potentially containing multiple copies of the def region. The exact mechanism of this genetic rearrangement, and whether any other changes have also occurred awaits further examination.

AcrAB-TolC mediated efflux contributes to the absolute level of susceptibility to LBM415 resulting from target overexpression

Inactivation of the acrB gene in strain CDS23 caused a 16-fold increase in susceptibility to LBM415, to a level similar to that of the original parent strain NB65044 (Table 2). Pump loss in this strain gave the expected change in susceptibility to the known pump substrate clindamycin and had no effect on susceptibility to tetracycline, a pump non-substrate (Table 2). The 16-fold change in susceptibility to LBM415 is similar to the fold change in susceptibility to LBM415 observed for the parent strain NB65044 upon loss of
AcrB (6) (Table 2). Therefore efflux contributes a constant 16-fold decrease in sensitivity, apparently independent of the level of underlying target-based susceptibility. Strain CDS41 (Def overexpressor lacking AcrAB) is 16-fold less sensitive to LBM415 than strain CDS01 (wild type Def levels and lacks AcrB), indicating that def overexpression, in the absence of the pump, also results in an approximate 16-fold decrease in susceptibility (Table 2). The 16-fold decrease in susceptibility to the potent compound LBM415 conferred by def overexpression in the absence of the pump results in a strain that is still fairly sensitive to LBM415 (CDS41; MIC = 4 µg/ml, Table 2). This is an indication of how potent LBM415 is in terms of target inhibition. From this starting point, however, the additional 16-fold decrease in sensitivity engendered by the intact efflux pump provides an absolute level of insusceptibility that is likely more clinically significant (CDS23; MIC = 64 µg/ml, Table 2).
DISCUSSION

In developing novel antimicrobials, it is prudent to investigate resistance development in target pathogens as early as possible in order to more fully understand the biology of the intracellular target. These efforts have led to a better understanding of the potential impact of resistance mechanisms such as Fmt bypass (4, 18) and efflux (6) vis a vis peptide deformylase inhibitors. In this study, we have shown that target overexpression resulting from def gene copy number amplification on the chromosome can decrease susceptibility of H. influenzae to LBM415. Gene copy number amplification has been previously shown to mediate beneficial phenotypes or survival under selective pressure, including antibiotic exposure (7, 21, 22, 27-29, 32) and is believed to be a frequent occurrence and mechanism of genomic evolution (23, 30). Nonetheless, chromosomal gene copy number expansion has not been reported as a bacterial resistance determinant as frequently as might be expected. This may be because initial gene duplication (illegitimate recombination) is a lower frequency event and/or is limited to those targets where overexpression can be physiologically tolerated. Copy number expansion is theoretically beneficial in that the copy number can expand and contract (32). Therefore, this mechanism is regulated, reversible and once the selection pressure is removed can quickly be reversed. We have not tested this systematically here, but our PFGE analysis of CDS23 at different times has shown that the band containing the amplification of def is variable, suggesting such flexibility (Figure 5C). It has also been shown that genes located near rrn loci are subject to a high frequency of duplication events (3). Therefore, the location of the def gene immediately downstream of one of the 5S rRNAs (Figure 3) encoded as part of one of the 5 rrn loci on this small chromosome (8) may predispose this particular gene to amplification under exposure to LBM415 or
other peptide deformylase inhibitors. Resistance to the peptide deformylase inhibitor actinonin due to target overexpression resulting from def promoter mutation has also been reported (5).

RND family efflux pumps have recently been implicated in the development of target based resistance. For example, in the case of fluoroquinolone resistance development in P. aeruginosa (15). We have shown here that the absolute decrease in susceptibility to LBM415 mediated by the overexpression of Def in CDS23 is significantly enhanced by the AcrAB-TolC efflux pump, further indicating that modest intrinsic efflux can become very significant when paired with an underlying target based resistance mechanism. Since the Def overexpressing mutant is still relatively susceptible to LBM415 in the absence of the AcrAB-TolC pump (LBM415 MIC = 4 μg/ml), the presence of this efflux pump could contribute to the survival (selection) of the Def overexpressing phenotype and would determine to a significant extent the ultimate resistance level. This underscores the potential benefit of developing peptide deformylase inhibitors that better circumvent the AcrAB-TolC efflux pump.

In conclusion, the addition of this mode of target overexpression and its interplay with AcrAB-TolC efflux, to the mechanisms reducing the effectiveness of peptide deformylase inhibitors provides yet another example of the genetic ingenuity that bacteria can employ against efforts to develop novel antimicrobial compounds.
Acknowledgements

The authors wish to thank Kathryn Bracken for synthesizing LBM415. D.M.D. is a Novartis Presidential postdoctoral fellow.

REFERENCE

Role of the AcrAB-ToIC efflux pump in determining susceptibility of
Haemophilus influenzae to the novel peptide deformylase inhibitor LBM415.

8. Fleischmann, R. D., M. D. Adams, O. White, R. A. Clayton, E. F. Kirkness,
A. R. Kerlavage, C. J. Bult, J. F. Tomb, B. A. Dougherty, J. M. Merrick, and
et al. 1995. Whole-genome random sequencing and assembly of Haemophilus

antimicrobial characterization of LBM415 (NVP.PDF-713), a new peptide
deformylase inhibitor of clinical importance. Antimicrob Agents Chemother
49:1468-76.

Wagner. 1998. Isolation and crystallization of functionally competent
Escherichia coli peptide deformylase forms containing either iron or nickel in the

11. Hoving, S., B. Gerrits, H. Voshol, D. Muller, R. C. Roberts, and J. van
Oostrum. 2002. Preparative two-dimensional gel electrophoresis at alkaline pH
using narrow range immobilized pH gradients. Proteomics 2:127-34.

activity of NVP PDF-713, a novel peptide deformylase inhibitor, tested against

Table 1. Oligonucleotide primers used for PCR, sequencing and real time RT-PCR

<table>
<thead>
<tr>
<th>PRIMER</th>
<th>SEQUENCE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Afor</td>
<td>5’-GGTTGGGTGTTGTAAGTGATGTG-3’</td>
</tr>
<tr>
<td>Arev</td>
<td>5’-ACTTTAGTAACAGGCTCACAGACAACC-3’</td>
</tr>
<tr>
<td>Bfor</td>
<td>5’-GCTGTGCTATAATCCCCACTAA-3’</td>
</tr>
<tr>
<td>Brev</td>
<td>5’-GACTGTGCTTTCTTCTTTACGTAAGG-3’</td>
</tr>
<tr>
<td>DEF HI F1</td>
<td>5’-CAGAAGGACCACCGTGTCGAAAG-3’</td>
</tr>
<tr>
<td>DEF HI REV</td>
<td>5’-CTTTTCGAACACGGGTGCTCTTG-3’</td>
</tr>
<tr>
<td>DEF RACE1</td>
<td>5’-ATTCCCGTTCCTCTGAAGCG-3’</td>
</tr>
<tr>
<td>DEF RACE3</td>
<td>5’-TATCCACCTGAAGTGCGAGCTAAACC-3’</td>
</tr>
</tbody>
</table>

PRIMERS FOR REAL-TIME RT-PCR

<table>
<thead>
<tr>
<th>PRIMER</th>
<th>SEQUENCE</th>
</tr>
</thead>
<tbody>
<tr>
<td>HIdefST1F</td>
<td>5’-GCGATAAACAGAATCTAGTTTTGTTTTG-3’</td>
</tr>
<tr>
<td>HidefST1R</td>
<td>5’-CCCGTTCGCTCTCTGAAG-3’</td>
</tr>
<tr>
<td>HIrpsLST1F</td>
<td>5’-AACCTTCAAGAGCACAGTGTTGTAT-3’</td>
</tr>
<tr>
<td>HIrpsLST1R</td>
<td>5’-GCACACCCCGTGTAAGTCTTTAA-3’</td>
</tr>
<tr>
<td>HIAcrBST1F</td>
<td>5’-AAAATGATAATTCGCGTGCTACGG-3’</td>
</tr>
<tr>
<td>HIAcrBST1R</td>
<td>5’-GAGGTTGGATTGATGCTAAACAC-3’</td>
</tr>
<tr>
<td>HidefST1M2a</td>
<td>5’-CCCTGAAATTTTG-3’</td>
</tr>
<tr>
<td>HIrpsLST1M2a</td>
<td>5’-ACGACCACCACCGGATTA-3’</td>
</tr>
<tr>
<td>HIAcrBST1M2a</td>
<td>5’-AACGGACTCTGCAACATT-3’</td>
</tr>
</tbody>
</table>

a TaqMan MGB fluorogenic (FAM-labeled) probes for real-time RT-PCR; MGB, minor groove binder. FAM, 6-carboxyfluorescein.
Table 2. Contribution of AcrAB-TolC mediated efflux to susceptibility to LBM415 in wild type and Def overexpressing *H. influenzae*.

<table>
<thead>
<tr>
<th>Strain</th>
<th>Relevant characteristics</th>
<th>MIC µg/ml</th>
<th>LBM415</th>
<th>CLD</th>
<th>TET</th>
</tr>
</thead>
<tbody>
<tr>
<td>NB65044</td>
<td>parent</td>
<td>4</td>
<td>8</td>
<td>0.5</td>
<td></td>
</tr>
<tr>
<td>CDS01</td>
<td>acrB</td>
<td>0.25</td>
<td>0.5</td>
<td>0.5</td>
<td></td>
</tr>
<tr>
<td>CDS23</td>
<td>Def</td>
<td>64</td>
<td>4</td>
<td>0.5</td>
<td></td>
</tr>
<tr>
<td>CDS40</td>
<td>CDS23 acrB overexpressed</td>
<td>4</td>
<td>0.5</td>
<td>0.5</td>
<td></td>
</tr>
</tbody>
</table>

MIC, minimum inhibitory concentration; CLD, clindamycin (AcrAB-TolC pump substrate); TET, tetracycline (AcrAB-TolC pump non-substrate).
FIGURE LEGENDS

Figure 1. Two dimensional gel electrophoretic examination of proteins from *H. influenzae* strains. Panel A, strain NB65044 (wild type); panel B, CDS23 (Def overexpressing strain). The overexpressed Def protein spots are indicated (arrows). The region of the total gels shown is indicated in panel A (MW and pH range).

Figure 2. Genetic organization of the region containing the *def* gene in *H. influenzae* NB65044 (A) and the additional PCR products A2 (B) and B2 (C) generated by PCR reactions using CDS23 genomic DNA template and the primer pairs Afor/Arev and Bfor/Brev (D, panels A and B). Isolation and sequencing of bands A1 and B1 (D) confirmed these as the expected products for each of these PCR reactions and these are the sole products obtained when using genomic template from NB65044, the parent of CDS23. Lane 1, NEB 1 kb DNA ladder (lowest to highest: 1, 1.5, 2, 3, 4, 5, 6, 8 and 10 kbp).

Figure 3. Genetic analysis of the *def* repeat region of CDS23. Agarose gel (A) and southern blot (B) of *Nde*I-digested genomic DNA from strains NB65044 (Lane 2) and CDS23 (Lane 3). Lane 1, DNA standards. The *Nde*I fragment encompassing *def* is indicated by the arrow. Panel C shows PFGE analysis of *Apa*I digested genomic DNA from strains NB65044 (Lane 1) and CDS23 (Lane 2). Lane 3 shows the *Apa*I digest from a CDS23 colony grown in LBM415 prior to being frozen. The *def*-containing fragments are shown (arrowheads). Lane 4, DNA standards. Below is shown the overall genetic arrangement of the *def* repeat region of CDS23, with a large number of copies of *def*, separated by a *Nde*I sites and 5S rRNAs. kb, kilobase pairs; N, *Nde*I.
Fig 1
Fig 2
Fig 3