Title: Emtricitabine-Triphosphate in Dried Blood Spots as a Marker of Recent Dosing

Running title: FTC-TP in DBS to quantify recent dosing

Jose Castillo-Mancilla, MD†, Sharon Seifert, PharmD§, Kayla Campbell, BA§, Stacey Coleman, BS†, Kevin McAllister, BS§, Jia-Hua Zheng, PhD§, Edward M. Gardner, MD†, Albert Liu, MD, MPH≡, David V. Glidden, PhD التربية, Robert Grant, MD, MPH¥, Sybil Hosek, PhD╨, Craig M. Wilson, MD╢, Lane R. Bushman, BChem§, Samantha MaWhinney, ScD├, Peter L. Anderson, PharmD§#.

Division of Infectious Diseases, School of Medicine, University of Colorado-AMC, Aurora, CO†. Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado-AMC, Aurora, CO§. Bridge HIV, San Francisco Department of Public Health, San Francisco, CA≡. Department of Epidemiology & Biostatistics, University of California San Francisco, CA₸. Gladstone Institute, University of California San Francisco, CA╨. Department of Psychiatry, John H. Stroger Jr. Hospital of Cook County, Chicago, IL║. Department of Epidemiology, University of Alabama at Birmingham, AL╠. Department of Biostatistics and Bioinformatics, Colorado School of Public Health, University of Colorado-AMC Aurora, CO├.

#Corresponding Author:
Peter L. Anderson, Department of Pharmaceutical Sciences, University of Colorado Skaggs School of Pharmacy and Pharmaceutical Sciences-AMC. 12850 E. Montview Blvd., V20-C238, Aurora, CO 80045, (o) 303 724 6128, (f) 303 724 6135
peter.anderson@ucdenver.edu.
Abstract

Background: New objective measures of antiretroviral adherence are needed. We determined if emtricitabine triphosphate (FTC-TP) in dried blood spots (DBS) can be used as a marker of recent dosing to tenofovir disoproxil fumarate-emtricitabine (TDF-FTC).

Methods: The half-life of FTC-TP was estimated in DBS samples obtained from an intensive pharmacokinetic (PK) study of co-formulated TDF-FTC in HIV-negative and HIV-infected participants. The concordance of quantifiable FTC-TP in DBS with tenofovir (TFV)/FTC in plasma was evaluated utilizing paired plasma/DBS samples from participants enrolled in 2 large pre-exposure prophylaxis (PrEP) open-label trials. The time to FTC-TP undetectability after TDF-FTC dosing was evaluated utilizing DBS from HIV-negative participants enrolled in a directly-observed therapy study of variable adherence to TDF-FTC.

Results: The mean (95% CI) terminal half-life of FTC-TP in the PK study was 35 (23 to 47) hrs. A total of 143/163 (88%) samples obtained 0-48 hours post TDF-FTC dose had quantifiable FTC-TP in DBS, compared with 2/93 (2%) and 0/87 (0%) obtained >48 and >96 hours post dose. In 746 paired plasma/DBS samples from 445 participants enrolled in PrEP trials, when both TFV/FTC in plasma were below the limit of quantification FTC-TP was as well in 98.9% of samples, and when either TFV or FTC in plasma were quantifiable, FTC-TP was as well in 90.5% of samples.

Conclusions: The half-life of FTC-TP in DBS is short relative to TFV-diphosphate (TFV-DP), making it a surrogate for TFV-FTC detection in plasma. FTC-TP can be...
simultaneously quantified in DBS along with TFV-DP, which quantifies cumulative adherence to TDF-FTC.
Background

Oral pre-exposure prophylaxis (PrEP) using co-formulated tenofovir disoproxil fumarate and emtricitabine (TDF-FTC) has proven effective to prevent HIV infection in high-risk individuals (1-7). Unfortunately, PrEP efficacy has not been consistent across all studies, mostly due to variations in drug adherence (8-10). Multiple studies have demonstrated that sustained drug adherence and exposure are the main factors that determine success in PrEP (1, 5). However, despite its importance, no gold standard measure of antiretroviral adherence is currently available in routine clinical practice, and adequately quantifying adherence continues to be a challenge.

Plasma and intracellular levels of tenofovir (TFV) and TFV-diphosphate (TFV-DP) have been shown to be powerful markers of adherence to PrEP (1, 5, 11). In particular, TFV-DP in red blood cells (RBCs), measured using dried blood spots (DBS), was found to be a strong marker of cumulative adherence to TDF-FTC and highly predictive of PrEP efficacy in men who have sex with men (MSM) (5, 7, 12). This is due to the uniquely long intracellular half-life (17 days) of TFV-DP in RBCs (and DBS), which leads to high accumulation with optimal adherence such that adherence gradients can be determined. This is informative of cumulative TDF dosing (adherence) over an extended period of time (6). However, because of its long half-life, TFV-DP in DBS is unable to discriminate between patterns of recent versus remote dosing, and cannot adequately detect variations in very recent dosing.

Similar to TFV, FTC (the other component of the currently-approved PrEP regimen) is also phosphorylated and trapped inside of RBCs as FTC-triphosphate (FTC-TP) (13), with the advantage that it can be simultaneously quantified in DBS along with
TFV-DP. Although the pharmacokinetics of TFV-DP in DBS have been defined (6), our current knowledge about the disposition of FTC-TP in this matrix is limited. In addition, it remains unknown whether FTC-TP in DBS can provide complementary adherence information to TFV-DP.

In this study, we aimed to characterize the pharmacokinetics of FTC-TP in DBS and to evaluate its utility as a marker of recent dosing to TDF-FTC.

Methods

DBS samples from several studies were collected and used for data analyses; each study is briefly described below. The standard dose of TDF 300 mg-FTC 200 mg was used in all studies. The local Institutional Review Boards approved all studies and informed consent was obtained.

Cell-PrEP

Cell-PrEP (NCT01040091) was a prospective, observational, intensive pharmacokinetic study conducted at the University of Colorado-Anschutz Medical Campus in healthy HIV-negative and treatment-naïve HIV-infected adult male and female participants aged 18-55 years. HIV-negative participants received daily co-formulated TDF-FTC for 30 days followed by 30 days off drug (washout period), while HIV-infected participants received daily co-formulated TDF-FTC plus efavirenz 600mg and were followed for a total of 60 days. Whole blood for DBS was collected at 2 hours post-dose on days 1, 3, 7 and 20 and at 1, 2, 4, 8 and 24 hours post-dose on day 30 in HIV-negative and HIV-infected participants, and randomly on days 35, 45 and 60 in the...
HIV-negative group. Participants fasted overnight prior to the dosing visits. Medication adherence was assessed by self-report, pill count and a dosing calendar.

DOT-DBS

DOT-DBS (NCT02022657) is an ongoing, prospective, randomized, observational, intensive pharmacokinetic study of directly-observed oral co-formulated TDF-FTC being conducted at the University of Colorado-Anschutz Medical Campus and the San Francisco Department of Public Health among healthy HIV-negative adult male and female participants aged 18-50 years. Participants were randomized to one of the following adherence patterns of TDF-FTC: 100% (daily dosing), 67% (either 2 days on, 1 day off dosing or 2 weeks on, 1 week off dosing) or 33% (either 1 day on, 2 days off dosing or 1 week on, 2 weeks off dosing) for a total of 12 weeks, followed by a 12-week washout and then to another randomly-assigned 12-week dosing period at a different adherence pattern. All dosing events in this study are witnessed either in-person or via mobile video-conferencing. DBS are being collected at convenience times post-dose (untimed) at 2, 4, 6, 8, 10, 12, 15, 18, 21, 24, 26, 28, 30, 32, 34 and 36 weeks after study initiation.

iPrEx-OLE

The iPrEx Open Label Extension (iPrEx OLE, NCT00458393) was a 72-week long multinational study that evaluated uptake and adherence to PrEP in men and transgender women who have sex with men from three previous randomized controlled trials: Adolescent Medicine Trials Network for HIV/AIDS Interventions (ATN) 082, iPrEx...
Participants were male (gender at birth) older than 18 years who reported having had anal intercourse with men and had previously participated in a trial of daily oral PrEP with TDF-FTC (iPrEx and ATN 082) or TDF alone (US Safety Study). Upon enrollment, all participants were offered daily oral PrEP with TDF-FTC if they were HIV-antibody negative and they had no symptoms of acute HIV infection. Visits were done at enrollment and at weeks 4, 8, 12, 24, 36, 48, 60, and 72 after starting PrEP, and paired plasma/DBS samples were collected at a visit prior to week 24.

ATN 110

ATN 110 (NCT 01772823) was a 48-week, multicenter, open label study that combined PrEP with evidence-based behavioral risk reduction interventions and sexual health and adherence promotion counseling in the US. Eligible participants were 18-22 year old HIV-uninfected MSM who reported high-risk behavior for HIV infection in the past 6 months (12). Upon enrollment, all participants were offered daily oral PrEP with TDF-FTC if they were HIV-antibody negative and had no symptoms of acute HIV infection. Study visits occurred at baseline, monthly through week 12 and quarterly through week 48. DBS and plasma samples were serially collected in a subset of participants.

13-2104

The 13-2104 study (NCT02012621) is an ongoing observational cohort, currently being conducted at the University of Colorado Hospital, which is prospectively...
evaluating the relationship of TFV-DP and FTC-TP levels in DBS with virologic suppression in HIV-infected participants on TDF-FTC-based antiretroviral therapy. DBS (obtained from venipuncture and fingerstick) are being collected at the time of their regular clinic visits within a 48-week time period.

DBS Processing and Drug Assays

After venipuncture, 25 microliters of whole blood from EDTA tubes were spotted five times onto 903 Protein Saver Cards (Whatman/GE Healthcare, Piscataway, NJ), allowed to dry for at least 2 hours (up to overnight) and placed in plastic bags with humidity indicators, which were stored in a sample box with desiccant at -20°C or -80°C until analysis (14). For drug analysis of FTC-TP in DBS, a 3-mm diameter disk was punched with micropuncher from the blood spot. The punched disk was placed in a microcentrifuge tube with 500 mcl of 70:30 methanol-H₂O and sonicated for 10 minutes, constituting a lysed cell matrix that was stored at -80°C until analysis using liquid chromatography tandem mass spectrometry (LC-MS/MS), which has been previously validated with an intra- and inter-extraction coefficient of variation of ≤12.9% and an inter-card % difference of ±12.4% (6, 14, 15). Plasma TFV and FTC were measured using a previously validated LC-MS/MS method (16). The lower limit of quantification (LLOQ) for FTC-TP in DBS was 0.1 pmol/sample; the LLOQ for both TFV and FTC in plasma was 10 ng/ml.

Pharmacokinetic Analysis of FTC-TP in DBS

The half-life and steady state concentration of FTC-TP were estimated using
one-compartment, first-order pharmacokinetics. In the accumulation phase, the individual average steady state concentration (C_{ssavg}) for each participant was estimated by fitting a mono-exponential equation to the concentration-time data from first-dose to steady state; $C_t = C_{ssavg} \times (1 - \exp^{(-k \times t)})$ where t is time on therapy, C_{ssavg} is the fitted steady-state concentration, and k is the fitted elimination rate constant. In the elimination phase, declining data points from the last day of dosing in individual HIV-negative participants (day 30) were analyzed to determine the elimination rate constants (k_e) of FTC-TP in DBS by fitting a linear regression to the natural log-transformed concentrations obtained at 1, 2, 4, 8 and 24 hours post-dose using GraphPad (version 6.00 for Windows; GraphPad Software, La Jolla CA, www.graphpad.com). FTC-TP levels in DBS that were BLQ in the accumulation phase were imputed a value of 0.05 pmol/punch, which is half-way between zero and the LLOQ of the assay. The difference in the accumulation half-life between HIV-negative and HIV-infected individuals was evaluated using an unpaired t-test, and a $P<0.05$ was considered to be statistically significant. Data are presented as mean (95% confidence interval [CI]) unless noted otherwise.

Post-dose detectability of FTC-TP in DBS

The quantification of FTC-TP in DBS in relation to time post-dose was evaluated utilizing samples obtained from HIV-negative participants enrolled in DOT-DBS. In this analysis, the presence or absence of FTC-TP was assessed in DBS obtained at >0 to 12, >12 to 24, >24 to 36, >36 to 48, >48 to 60, >60 to 72, >72 to 84, >84 to 96 and >96 hours post TDF-FTC dose. FTC-TP in DBS was defined as quantifiable or below the
limit of quantification (BLQ) and the proportions of DBS samples with quantifiable FTC-TP within each timeframe and the time to undetectability after TDF-FTC dosing were determined.

Agreement between TFV-FTC in plasma with FTC-TP in DBS

To evaluate the concordance in drug detectability between parent drugs in plasma and FTC-TP in DBS, the presence or absence of quantifiable drug in paired plasma/DBS samples obtained at various study visits in iPrEx-OLE and ATN 110 was assessed. To do this, the agreement of a BLQ level of both TFV and FTC in plasma with a BLQ level of FTC-TP in DBS and of the quantification of either TFV or FTC in plasma with the quantification of FTC-TP in DBS was determined. The difference between the proportions of quantifiable TFV-FTC in plasma and quantifiable FTC-TP in DBS was assessed using the McNemar’s test for paired nominal data. A \(P < 0.05 \) was considered to be statistically significant.

FTC-TP in DBS obtained via venipuncture versus fingerstick

The correlation between FTC-TP levels in DBS obtained from peripheral blood via venipuncture (25 mcl of blood spotted into 903 Protein Saver Cards) versus DBS obtained from capillary blood via fingerstick was evaluated in HIV-negative participants enrolled in DOT-DBS and in HIV-infected participants enrolled in the 13-2104 study. The rationale was that, during assay validation, it was found that FTC in plasma can be converted to FTC-TP in RBCs as whole blood sits at room temperature prior to spotting when the blood is collected by venipuncture (14). This improves the utility of detecting a
recent PrEP dose, but it suggests that fingerstick DBS (which is fixed immediately) may show different results. Briefly, a lancet puncture was performed after sterile cleaning of the skin in the index, middle or annular finger distal phalanx. After the puncture, the first drop of blood was discarded and subsequent blood drops were collected onto Protein Saver Cards, which were processed and stored as described above (6, 14). The correlation between venipuncture and fingerstick FTC-TP was evaluated using a Pearson correlation.

Pre-Appointment Dosing

The potential clinical application of FTC-TP in DBS as a marker of recent dosing was evaluated by its ability to detect “white coat” adherence in individuals who appeared to be non-adherent by their level of TFV-DP, but who took a dose of TDF-FTC prior to their study visit. To accomplish this, the proportions of DBS samples obtained from participants enrolled in iPrEx-OLE and ATN 110 in which FTC-TP was quantifiable were determined according to the following cumulative adherence dosing categories based on the levels of TFV-DP (5): <2 doses per week (<350 fmol/punch or BLQ), 2-3 doses per week (350-699 fmol/punch) and ≥4 doses per week (≥ 700 fmol/punch).

Results

Study Population

The demographic characteristics of the participants enrolled in Cell-PrEP, DOT-DBS, iPrEx-OLE, ATN 110 and 13-2104 are shown in Table 1.
Pharmacokinetics of FTC-TP in DBS – Cell-PrEP

Following first dose, FTC-TP reached a maximal concentration (C_{max}) at a median (range) of 4 (2-8) hours. In the accumulation phase, all data points from 13 HIV-negative and 10 HIV-infected Cell-PrEP participants were included in the analysis, which yielded a mean half-life of 38 (29 to 55) hours and a $C_{\text{ss,avg}}$ of 0.26 (0.24 to 0.29) pmol/punch (Figure 1a). No difference in half-life was identified between HIV-negative and HIV-infected participants ($P=0.43$). Declining data points were available in 7 HIV-negative Cell-PrEP participants and were included in the elimination phase analysis. The mean elimination half-life of FTC-TP in DBS was 35 (23 to 47) hours (Figure 1b).

During the washout phase, FTC-TP concentrations in DBS were BLQ in all except 1 participant at day 35 (5 days after the last dose) and in all participants at days 45 and 60, whereas TFV-DP was well-within the quantifiable range at all these time points (data not shown).

Detection of FTC-TP in DBS after TDF-FTC dosing – DOT-DBS

A total of 256 DBS samples post TDF-FTC dosing were obtained from 29 participants enrolled in the DOT-DBS study and included in this analysis. The proportion of samples with quantifiable FTC-TP in each post-dose category is shown in Table 2. All BLQ samples (n=13) obtained within the 0 to 12 hours post TDF-FTC dose period were obtained within 30 minutes after the dosing episode and occurred in participants who were not randomized to 100% adherence (4 randomized to 67% and 3 randomized to 33%); 12 of those samples were obtained in individuals who had been off drug for at least 72 hours. Collectively, 143 out of 163 (88%) samples obtained between 0 and 48
hours post TDF-FTC dose had quantifiable FTC-TP levels compared to only 2 out of 93 (2%) samples obtained >48 hours post-dose. None of the 87 samples obtained >96 hours had detectable FTC-TP in DBS.

Concordance of TFV-FTC in plasma with FTC-TP in DBS – iPrEx-OLE and ATN 110

A total of 746 paired plasma/DBS samples obtained from 445 patients enrolled in iPrEx-OLE and ATN 110 were analyzed (Table 1). The concordance of parent TFV and FTC in plasma with FTC-TP in DBS in both ends of the quantification continuum was determined. When both TFV and FTC were BLQ in plasma, FTC-TP was BLQ in DBS 98.9% of the time (Table 3). Comparatively, when either TFV or FTC were quantifiable in plasma, FTC-TP was quantifiable in DBS 90.5% of the time (Table 3). Overall, when TFV/FTC in plasma and FTC-TP in DBS were discordant, there was a higher probability that this discordance was due to a quantifiable TFV/FTC level in plasma when FTC-TP in DBS was BLQ (P<0.0001).

Correlation between FTC-TP in DBS obtained via venipuncture versus fingerstick – 13-2104 and DOT-DBS

A total of 51 paired DBS samples (30 from HIV-infected individuals) obtained at the same visit via venipuncture and fingerstick were analyzed. The mean time from venipuncture to DBS spotting was 3.9 (3.3 to 4.3) hours. Of these samples, 9 (17.6%) obtained via venipuncture versus 11 (21.6%) obtained via fingerstick (including all 9 samples obtained via venipuncture) were BLQ. FTC-TP concentration in venipuncture versus fingerstick were strongly correlated (r=0.93, P<0.0001).
Pre-Appointment Dosing – iPrEx-OLE and ATN 110

Only one iPrEx-OLE participant who had BLQ TFV-DP had quantifiable FTC-TP in DBS, in comparison with none of the ATN 110 participants. Figure 2 depicts the proportion of quantifiable FTC-TP in DBS according to TDF-FTC dosing categories. In the <2 doses per week category, 34% (57/166) of iPrEx-OLE and 32% (16/50) of ATN 110 participants who had low, but quantifiable, TFV-DP levels showed evidence of pre-appointment dosing (i.e., quantifiable FTC-TP at the time of study visit). In the 2-3 doses per week category, 79% (68/86) of iPrEx-OLE and 75% (45/60) of ATN 110 participants had quantifiable FTC-TP in DBS, consistent with recent dosing prior to study visit. Comparatively, 96% (255/267) of iPrEx-OLE and ATN 110 participants (combined) in the 4 or more doses per week category had evidence quantifiable FTC-TP in DBS.

Thus, only 4% (6/155) of iPrEx-OLE and 5% (6/112) of ATN 110 participants had evidence of recent drug discontinuation (i.e., FTC-TP BLQ) when taking 4 or more TDF-FTC doses per week.

Discussion

In this study, we describe the pharmacokinetics of FTC-TP in DBS and identify a half-life of approximately 1.5 days in this matrix. This is significantly shorter than the 17-day half-life of TFV-DP, the other component of the only currently FDA-approved PrEP medication (6). These FTC-TP findings are consistent with its disposition in peripheral blood mononuclear cells, in which FTC-TP was found to have a terminal half-life of 37 to 39 hours (17, 18) and an anticipated time to steady state of approximately 3-7 days (19,
The expected FTC-TP C_{ssavg} of approximately 0.26 pmol/punch is just moderately above the LLOQ of the assay (0.1 pmol/punch), such that concentrations fall BLQ at about the same time that plasma TFV (half-life 14 hours) and FTC (half-life 10 hours) fall below 10 ng/mL (13). These pharmacokinetic characteristics are well-suited for the utilization of FTC-TP in DBS as a marker of recent dosing to TDF-FTC in PrEP and HIV treatment. To further evaluate its utility, we showed that the quantification of FTC-TP in DBS has excellent concordance with the quantification of TFV-FTC in plasma (with a LLOQ of 10 ng/mL), and that it detects a TDF-FTC dosing episode that occurred within the previous 36 to 48 hours, but not beyond 96 hours post-dose. This is similar to the "look back" periods reported for both TFV-FTC in plasma with a LLOQ of 10 ng/mL (13) and supports the use of FTC-TP in DBS as a surrogate to plasma for recent dosing.

FTC-TP was readily detectable in DBS due to the large number of RBCs (~12 million) that are contained in a 3-mm DBS punch (6). An advantage to measuring FTC-TP in DBS is that it can be quantified simultaneously with TFV-DP in the same sample analysis. In addition, FTC-TP in DBS shows a strong correlation between venipuncture and fingerstick, which allows for potential self-collection and for its use in the field and resource-limited settings. Collectively, these characteristics make FTC-TP in DBS a useful biomarker to objectively measure recent drug adherence to TDF-FTC.

Given the difficulties regarding the accurate quantification of antiretroviral adherence for treatment and prevention, new objective measures of drug exposure and adherence that can discriminate adherence variations throughout treatment are needed. For example, although a TFV-DP level of ≥700 fmol/punch in DBS (consistent with taking ≥4 TDF-FTC doses per week) has been associated with high PrEP efficacy, it
provides limited data regarding recent dosing patterns (6). In this context, the inclusion of FTC-TP provides recent dosing information which could be incorporated into future adherence-response studies and clinical practice. When combined, these two pharmacological measures constitute a more comprehensive objective quantification of TDF-FTC intake over the last 1-2 months (TFV-DP) and 36-48 hrs (FTC-TP).

The potential clinical application of FTC-TP in DBS was demonstrated by the detection of recent TDF-FTC dosing in PrEP study participants with variable degrees of cumulative adherence. The high proportion (32-34%) of quantifiable FTC-TP observed in the group taking <2 TDF-FTC doses per week with low, but detectable, TFV-DP is consistent with low adherence with an intention to improve adherence in proximity to a study visit, which could be used as an opportunity to study predictors of this behavior in future trials and clinical practice. In contrast, the group of individuals in whom both TFV-DP and FTC-TP were BLQ indicates complete non-adherence, with virtually no study drug intake over the preceding month or so.

In terms of limitations, this study is based on the utilization of FTC-TP in DBS as a qualitative (yes/no) measure of recent TFV-FTC dosing and did not evaluate it as a quantitative measure. When using blood from venipuncture, the level of FTC-TP in RBC is influenced by high levels of FTC in plasma (14). While this does not impair the utility of detecting a recent dose, it does prevent the use of the actual FTC-TP value in modelling studies. A potential strategy to overcome this limitation is collection of DBS using fingerstick, since the capillary blood obtained by this process is immediately fixed into the DBS and would not allow for further FTC uptake and phosphorylation by the RBCs. The strong correlation \(r = 0.93 \) between FTC-TP in DBS collected via
venipuncture versus fingerstick suggests that this phenomenon would not significantly impact this approach in the field. Another limitation was that FTC-TP in DBS was BLQ in a fraction of cases when dosing was within 30 minutes of the blood draw after a recent period of at least 72 hours off drug. This suggests that FTC-TP in DBS may not pick up a prolonged drug holiday followed by “white-coat” dosing within 30 minutes of a clinic visit (although TFV-DP would show the prolonged holiday). More work is needed to understand how to use drug concentrations to infer patterns of dosing.

In conclusion, FTC-TP exhibits distinctive pharmacokinetics from TFV-DP in DBS, which support its use as a measure of recent dosing to TDF-FTC and as a surrogate for plasma TFV/FTC levels at an assay LLOQ of 10 ng/mL. Future studies are needed to examine the clinical utility of FTC-TP in combination with TFV-DP as measures of adherence to HIV PrEP and treatment.

Acknowledgements
We wish to thank the NIH AIDS Research and Reference Reagent Program for the reference standards used for the assays; the study personnel and nursing staff who assisted with the clinical protocol; and the subjects who participated. Dr. Anderson reports the donation of study drug and contract work with Gilead Sciences. All other authors: no conflict of interest.

Funding and Support
This work was supported by grants from the NIH: K23 AI104315 (J.C.M), U01 AI84735 and U01 AI106499 (P.L.A.), T32 AI 7447-23 (S.S.) and UL1 RR025780 and
UL1 TR001082 (University of Colorado Clinical and Translational Sciences Institute).

The ATN was funded by grant U01 HD40533 from the NIH through the National Institute of Child Health and Human Development with supplemental funding from the National Institutes Mental Health and the National Institute of Drug Abuse. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institute of Allergy and Infectious Diseases or the National Institutes of Health. Study drug and contract work was donated by Gilead Sciences.

Antiretroviral preexposure prophylaxis for heterosexual HIV transmission in Botswana.

4. Choopanya K, Martin M, Suntharasamai P, Sangkum U, Mock PA,
Leethochawalit M, Chiamwongpaet S, Kitisin P, Natrujirote P, Kittimunkong S,
Chuachoowong R, Gvetadze RJ, McNicholl JM, Paxton LA, Curlin ME, Hendrix
CW, Vanichseni S, Bangkok Tenofovir Study G. 2013. Antiretroviral prophylaxis for
HIV infection in injecting drug users in Bangkok, Thailand (the Bangkok Tenofovir
Study): a randomised, double-blind, placebo-controlled phase 3 trial. Lancet 381:2083-
2090.

S, Mosquera C, Casapia M, Montoya O, Buchbinder S, Veloso VG, Mayer K,
Charilalrtsak S, Bekker LG, Kallas EG, Schechter M, Guanira J, Bushman L,
Burns DN, Rooney JF, Glidden DV, iPrEx study t. 2014. Uptake of pre-exposure
prophylaxis, sexual practices, and HIV incidence in men and transgender women who

2013. Tenofovir, emtricitabine, and tenofovir diphosphate in dried blood spots for
determining recent and cumulative drug exposure. AIDS Res Hum Retroviruses 29:384-
390.

7. Liu AY, Cohen SE, Vittinghoff E, Anderson PL, Doblecki-Lewis S, Bacon O,
Chege W, Postle BS, Matheson T, Amico KR, Liegler T, Rawlings MK, Trainor N,
Blue RW, Estrada Y, Coleman ME, Cardenas G, Feaster DJ, Grant R, Philip SS,

FIGURE 1. Mean (95%; CI) (a) accumulation phase and (b) terminal phase (each symbol represent a different participant) half-lives of FTC-TP in DBS in HIV-negative and HIV-infected participants enrolled in Cell-PrEP. FTC-TP: emtricitabine triphosphate. t1/2: half-life. 95% CI: 95% confidence interval. Cavg: average concentration at steady state. In the accumulation phase (panel a), open circles indicate HIV-negative individuals and solid triangles indicate HIV-infected individuals.

<table>
<thead>
<tr>
<th>Study (n)</th>
<th>Median age (range)</th>
<th>Gender</th>
<th>Race/Ethnicity</th>
<th>HIV status</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Not Hispanic</td>
<td>Hispanic</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Males</td>
<td>White Black/African Asian/Mixed/Others</td>
<td>HIV-negative HIV-infected</td>
</tr>
<tr>
<td>Cell-PrEP (n=23)<sup>a</sup></td>
<td>31 (20-52)</td>
<td>16</td>
<td>9</td>
<td>11 (4 females)</td>
</tr>
<tr>
<td>DOT-DBS (n=29)<sup>b</sup></td>
<td>29 (21-50)</td>
<td>12</td>
<td>16</td>
<td>6 (3 females)</td>
</tr>
<tr>
<td>iPrEx-OLE (n=337)<sup>c</sup></td>
<td>29 (19-70)</td>
<td>337</td>
<td>59</td>
<td>40</td>
</tr>
<tr>
<td>ATN 110 (n=108)<sup>d</sup></td>
<td>20 (18-22)</td>
<td>108</td>
<td>29</td>
<td>53</td>
</tr>
<tr>
<td>13-2104 (n=30)<sup>d</sup></td>
<td>49 (26-63)</td>
<td>27</td>
<td>20</td>
<td>2 (1 female)</td>
</tr>
</tbody>
</table>

^aData for the accumulation phase analysis were available in 23 Cell-PrEP participants (including HIV-negative and HIV-infected); day 30 data for the terminal half-life analysis were available in 7 Cell-PrEP participants (all HIV-negative).^bIncluded participants who had available data at the time of analysis. ^cIncluded participants who had paired plasma and dried blood spot samples at the time of the study visit. ^dConvenience sample obtained at the time of study visit.
TABLE 2. Proportion of DBS samples with detectable FTC-TP levels according to time post TDF-FTC dose.

<table>
<thead>
<tr>
<th>Hours post-dose</th>
<th>>0-12</th>
<th>>12-24</th>
<th>>24-36</th>
<th>>36-48</th>
<th>>48-60</th>
<th>>60-72</th>
<th>>72-84</th>
<th>>84-96</th>
<th>>96</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total</td>
<td>76</td>
<td>38</td>
<td>36</td>
<td>13</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>87</td>
</tr>
<tr>
<td>Detectable</td>
<td>63</td>
<td>38</td>
<td>35</td>
<td>7</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>BLQ</td>
<td>13*</td>
<td>0</td>
<td>1</td>
<td>6</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>87</td>
</tr>
<tr>
<td>% Detectable</td>
<td>83%</td>
<td>100%</td>
<td>97%</td>
<td>54%</td>
<td>50%</td>
<td>0%</td>
<td>50%</td>
<td>0%</td>
<td>0%</td>
</tr>
</tbody>
</table>

*12 out of 13 occurred within 30 minutes of dosing following a prolonged drug holiday (≥72 hours). DBS=dried blood spots. FTC-TP=emtricitabine triphosphate. TDF=tenofovir disoproxil fumarate. FTC=emtricitabine. BLQ=below the limit of quantification.
TABLE 3. Concordance of TFV-FTC in plasma vs. FTC-TP in DBS in paired plasma/DBS samples from iPrEx-OLE and ATN 110.

<table>
<thead>
<tr>
<th>TFV or FTC Quant<sup>a</sup></th>
<th>FTC-TP Quant</th>
<th>FTC-TP BLQ</th>
<th>N=746</th>
</tr>
</thead>
<tbody>
<tr>
<td>439 (90.5%)</td>
<td>46 (9.5%)</td>
<td></td>
<td>485</td>
</tr>
<tr>
<td>TFV-FTC BLQ<sup>b</sup></td>
<td>3 (1.1%)</td>
<td>258 (98.9%)</td>
<td>261</td>
</tr>
</tbody>
</table>

^a485 samples were detectable for either TFV or FTC in plasma. ^b261 samples were BLQ for both TFV and FTC in plasma.

TFV=tenofovir. FTC=emtricitabine. FTC-TP=emtricitabine triphosphate. DBS=dried blood spots. Quant=Quantifiable. BLQ=below the limit of quantification.