Anaphylaxis Due to Remdesivir

1. Brian J. Hopkins, MD; Bonnie C. Prokesch, MD

1. Department of Internal Medicine, Division of Infectious Diseases, University of Texas Southwestern Medical Center, Dallas, TX, USA
2. Medical Director of Antimicrobial Stewardship, Parkland Health & Hospital System, Dallas, TX, USA

Corresponding author:
Bonnie C. Prokesch, MD
UT Southwestern Medical Center
5325 Harry Hines Blvd, Dallas, TX, USA 75390
Tel: 214-648-8806
Fax: 214-648-2741
Email: Bonnie.Prokesch@UTSouthwestern.edu
Introduction:

Dear Editor,

In December 2019 severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was first detected in Wuhan, China and found to cause acute respiratory symptoms and pneumonia.¹ To date, the disease caused by SARS-CoV-2, coronavirus disease 2019 (COVID-19) has resulted in over 100 million known cases and over 2 million deaths worldwide with limited effective pharmacologic treatment options.² Remdesivir, an antiviral prodrug whose metabolite acts as a nucleoside analog inhibiting viral RNA-dependent RNA polymerase,³ was approved by the Food and Drug Administration on October 22, 2020 for treatment of COVID-19 in adult and pediatric patients over 12 years of age and weighing over 40 kilograms.⁴ Although adverse events such as transaminitis and renal injury have been reported, the drug is thought to be relatively safe and reports of severe infusion-related reactions are scarce.⁵ While anaphylaxis is listed as a possible adverse effect of the medication on the package insert,⁶ no references are given. Here, we present the first case to our knowledge of anaphylaxis due to remdesivir.

Case report:

A 56-year-old female with glaucoma presented with cough and dyspnea after being found positive for SARS-CoV-2 via polymerase chain reaction testing six days prior. She initially required low-flow supplemental oxygen and was prescribed 200mg of intravenous remdesivir on the first day of her hospital stay followed by 100mg infusions in 250mL of 0.9% sodium chloride for the following four days, each to be given over one hour. The first two infusions were well-tolerated. However, 14 minutes after initiation of the second 100mg infusion, she developed erythema of her face, neck and upper chest, urticaria, perioral edema, and wheezing. The only other medications that she received earlier in the day were 200mg of oral benzonatate an hour
prior as well as 40mg of delayed-release oral pantoprazole and 40mg of subcutaneous enoxaparin four hours prior, all of which she had received previously without adverse reaction. She emergently received 0.3mg of intramuscular epinephrine and 125mg of intravenous methylprednisolone and was intubated due to worsening hypoxia and apnea. In light of her constellation of signs and symptoms as well their onset during remdesivir infusion, she was determined to have experienced an anaphylactic reaction due to remdesivir. She did not receive further remdesivir infusions and was extubated approximately 24 hours following intubation. Ultimately, she was discharged home after an eight day hospitalization with no need for further oxygen therapy.

Discussion:
This case of presumed anaphylaxis to remdesivir is important for clinicians to be aware of in the setting of the international pandemic of COVID19 where limited treatment options are currently available. Currently, many believe the potential benefits of treatment with remdesivir outweigh the risks, as there have been a paucity of severe adverse reactions reported. We hope this case can improve provider awareness of the possibility of anaphylaxis due to remdesivir.

Conclusion:
We present a case of suspected anaphylaxis due to remdesivir in a patient with COVID-19. Providers treating such patients should be aware of the possibility of severe adverse reactions to this antiviral agent.

References:


