diazabicyclooctane
- Mechanisms of ResistanceStructural Investigations of the Inhibition of Escherichia coli AmpC β-Lactamase by Diazabicyclooctanes
β-Lactam antibiotics are presently the most important treatments for infections by pathogenic Escherichia coli, but their use is increasingly compromised by β-lactamases, including the chromosomally encoded class C AmpC serine-β-lactamases (SBLs). The diazabicyclooctane (DBO) avibactam is a potent AmpC inhibitor; the clinical success of avibactam combined with...
- Mechanisms of ResistanceInsights into the l,d-Transpeptidases and d,d-Carboxypeptidase of Mycobacterium abscessus: Ceftaroline, Imipenem, and Novel Diazabicyclooctane Inhibitors
Mycobacterium abscessus is a highly drug-resistant nontuberculous mycobacterium (NTM). Efforts to discover new treatments for M. abscessus infections are accelerating, with a focus on cell wall synthesis proteins (M. abscessus...
- Epidemiology and SurveillanceIn Vitro Activity of Sulbactam-Durlobactam against Acinetobacter baumannii-calcoaceticus Complex Isolates Collected Globally in 2016 and 2017
Acinetobacter baumannii-calcoaceticus complex (ABC) organisms cause severe infections that are difficult to treat due to preexisting antibiotic resistance. Sulbactam-durlobactam (formerly sulbactam-ETX2514) (SUL-DUR) is a β-lactam–β-lactamase inhibitor combination antibiotic designed to treat serious infections caused by ABC organisms, including multidrug-...
- Mechanisms of ResistanceMolecular Basis of Class A β-Lactamase Inhibition by Relebactam
β-Lactamase production is the major β-lactam resistance mechanism in Gram-negative bacteria. β-Lactamase inhibitors (BLIs) efficacious against serine β-lactamase (SBL) producers, especially strains carrying the widely disseminated class A enzymes, are required. Relebactam, a diazabicyclooctane (DBO) BLI, is in phase 3 clinical trials in combination with imipenem for the treatment of infections by multidrug-resistant...
- SusceptibilityNew β-Lactamase Inhibitors Nacubactam and Zidebactam Improve the In Vitro Activity of β-Lactam Antibiotics against Mycobacterium abscessus Complex Clinical Isolates
The new diazabicyclooctane-based β-lactamase inhibitors avibactam and relebactam improve the in vitro activity of β-lactam antibiotics against bacteria of the Mycobacterium abscessus complex (MABC). Here, we evaluated the in vitro activities of two newer diazabicyclooctane-based β-lactamase inhibitors in clinical development, nacubactam and...