oxidative stress
- Mechanisms of Action: Physiological EffectsSynergistic Quinolone Sensitization by Targeting the recA SOS Response Gene and Oxidative Stress
Suppression of the recA SOS response gene and reactive oxygen species (ROS) overproduction have been shown, separately, to enhance fluoroquinolone activity and lethality. Their putative synergistic impact as a strategy to potentiate the efficacy of bactericidal antimicrobial agents such as fluoroquinolones is unknown.
- Mechanisms of Action: Physiological EffectsLeishmanicidal Activity of an In Silico-Screened Novel Inhibitor against Ascorbate Peroxidase of Leishmania donovani
Peroxidases are a heterogeneous family of enzymes that have diverse biological functions. Ascorbate peroxidase is a redox enzyme that is reduced by trypanothione, which plays a central role in the redox defense system of Leishmania. In view of developing new and novel therapeutics, we performed in silico studies in order to search for a ligand library and identify new drug candidates and their physiological roles...
- Mechanisms of ResistanceLack of the Major Multifunctional Catalase KatA in Pseudomonas aeruginosa Accelerates Evolution of Antibiotic Resistance in Ciprofloxacin-Treated Biofilms
During chronic biofilm infections, Pseudomonas aeruginosa bacteria are exposed to increased oxidative stress as a result of the inflammatory response. As reactive oxygen species (ROS) are mutagenic, the evolution of resistance to ciprofloxacin (CIP) in biofilms under oxidative stress conditions was investigated.
- PharmacologyRutin Attenuates Vancomycin-Induced Nephrotoxicity by Ameliorating Oxidative Stress, Apoptosis, and Inflammation in Rats
Nephrotoxicity is the major limiting factor for the clinical use of vancomycin (VCM) for treatment of serious infections caused by multiresistant Gram-positive bacteria. This study investigated the renal protective activity of rutin in a rat model of VCM-induced kidney injury in male Wistar rats.
- Experimental TherapeuticsBenefits of Ascorbic Acid in Association with Low-Dose Benznidazole in Treatment of Chagas Disease
The acute phase of Chagas disease (CD) is characterized by high parasitic proliferation and intense inflammation, exacerbating the generation of reactive oxygen species (ROS) and reactive nitrogen species (RNS). These reactive molecules are also increased by the metabolism of the nitroheterocyclic compounds benznidazole (BZ) and nifurtimox, the only drugs available for the treatment of CD.
- Experimental TherapeuticsArtemisone and Artemiside Are Potent Panreactive Antimalarial Agents That Also Synergize Redox Imbalance in Plasmodium falciparum Transmissible Gametocyte Stages
The emergence of resistance toward artemisinin combination therapies (ACTs) by the malaria parasite Plasmodium falciparum has the potential to severely compromise malaria control. Therefore, the development of new artemisinins in combination with new drugs that impart activities toward both intraerythrocytic proliferative asexual and transmissible gametocyte stages,...
- Mechanisms of Action: Physiological EffectsRole of smeU1VWU2X Operon in Alleviation of Oxidative Stresses and Occurrence of Sulfamethoxazole-Trimethoprim-Resistant Mutants in Stenotrophomonas maltophilia